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Abstract

We propose two novel model architectures for com

puting continuous vector repre-

::ntmonsoflzradsﬁ'omvexylmgedatasets The quality of these representations
measured in a

and the results are compared to the previ-
mslybcstondﬂmmtypcsofneuml networks We

takes less than 4 day ty wi vectmsalﬁbxlhonwa-ds

data set. Fmthamm,wcshowthattlmievm state-of-the-art

mance on our test set for '
1 Introduction
Many current NLP systems and techniques treat words there is no notion of similar-
1tybctwecnwards,astbcsear:mpmsemcdasmdlcmmav . This choice has several good
reasons -{Simplicity d the obser that simple models trained on huge amounts of
dazamormcnmcx txmmdonlessdata.AnexampIensrhc model

used for statistical language modeling - today, it is possible to train N-grams on virtually all available
data (trillions of words [3]).

However.(hcmmpletechmuesarealthc:rhmmmmanytasks For example, the amount of
' tion is the performance is usually

dominated by the size of high quality speech data (often just millions of words). In
machine l:mnslanon, the existing corpora for many languages contain only a few billions of words
or less. Thus, there are situations where simple scaling up of the basic techniques will not result in
any significant progress, and we have to focus on more advanced techniques.

With progress of machine learning techniques in recent years, it has become possible to

train more
Probably

complex models on much larger data s.el, and they typlcally ouq:e:rfmm the simple models.
the most successful concept is to use dist reseritations of words [ 10]. For example, neural
network based language models 51gmﬁ 3 1,27,171.

1.1 Goals of the Paper

The main goal of this paper is to
vectors from huge data sets with
far as we know, none of the previous

introduce techniques that can be used for learning high-quality word
billions of words, and with millions of words in the vocabulary. As
ly proposed architectures has been successfully trained on more

le. worp2VEC



than a few hundred of millions of words, with a modest dimensionality of the word vectors between

£50-100.

We use recently proposed techni i i i
: : ; ques for measuring the quality of the resulting vector representa-
mwnhthcgpmuonmnowmwmm;grmmmndmuamwmm.mm
of i s can ha rees of similarity [20). This has been observed earlier in the context
mmﬂarmwx - 'nfmnqﬂc,nmmsmhmmulﬁplewmdcndings,nﬂifwewmﬂfa
ords in a su the original vector iti i words that have similar
endings (13, 14). space original space, it is possible to find s
Somewhat surprisingly, it was found that similarity of word representations gocs beyond simple
syntactic regularities. Using a word offset technique where simple algebraic operations are per-
formed on the word vectors, it was shown for example that vector( "King”") - vector("Man”) + vec-
tor( W"Jmﬂminavecwrmatisclomtmﬂrmmmmionofdlewordem-

. Moreover, discuss
mtl:dimsiona]ityufthewmdveaomandonmcamoumOfmcuﬁningdﬂﬂ-

1.2 Previous Work

Representation of words as continuous vectors has a long history (10,26, 8]. A very popular model

_architecture formﬁmaﬁngnuualnctwoﬂhngtmgemodeWWPtoposedm[ﬂ.ma

feedforward neural networl wiﬂla_ﬁmulxojwﬁnnhyuandamﬁnmhiddm!awwasuscdw

learn jointly the word veclormpmscntaﬁonandastaﬁsﬁcallmgmgcmodsl. Tlnsworkhasbeenm‘s
followed by many others. FqE.TRMN NG
Anodwtinmﬁnga:chimmofNNleﬁpresenwdin[l_?ﬁli],whercthewmdvectmsa;e
ﬁmlmmedusingneurelnctwmku&masinglehiddenlaymmmwmmcnuwdtom{n
lth'N'LM.Ttrus.mewmdvecmrsarelmedevenwiﬂ:ounoonstrucﬁngtheﬁﬂlNNlM.ln&ns
wmk,wedirealymmdmhudimmwdfmjustmmeﬁrﬂsmpwhmﬂwwmdwm

learned using a simple model.

Ilwaslatershawuthauhcwordvecmmbensedtosigniﬁcanﬂ i anmmny
NLP applications [4, 5,29]. Estimation of the word vectors itself was performed using different
model architectures and trained on various corpora [4,29,23,19, 9], and some of the resulting word
vectors were made available for future research and comparison’, However, as far as we know, these

architectures were significantly more isive foru-ainin_gthnnthcqnepmpqsed
in [13], with the exception of certain e] where diagonal weight matrices
are used [23].

2 Model Architectures

Many different types of models were proposed for estimating continuous representations of words,
including the well-known Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA)..
In this paper, we focus on distributed representations of words learned by neural networks, as it was
previously shown that they perform significantly better than LSA for preserving linear regularities
among words [20,31); LDA moreover becomes computationally very expensive on large data sets.

Similar to [18], to compare different model architectures we define first the computational complex-
ity of a model as the number of parameters that need to be accessed to fully train the model. Next,
we will try to maximize the accuracy, while minimizing the computational complexity.

'The test set is available at www . £it . vutbr.cz/-imikolov/rnnlm/word-test.vl.txt

Inttp://ronan.collobert .com/senna/ '
http://metaoptimize. com/projects/wordreprs/
http://www.fit.vutbr.cz/-imikolov/rnnlm/
http://al.stanford.edu/-ehhuang/|




| For all the following models, the training complexity is proportional to
O=ExTxQ; M
where E is number of ng epochs, 7' is the number of the #

defined further for each model architecture. Common choice is E = 3 = 50 anc
All models are trained using stochastic gradient descent and backpropagation [26].

2.1 Feedforward Neural Net Language Model (NNLM)

The probabilistic feedforward neural network language model has been proposed in [1]. It consists
of input, projection, hidden and output layers. At the input layerJill, previous words are encoded
using 1-of-V' coding, whefig V' is size of the vocabulary. The input layer is then projected to a
projection layefiP that has dimensionality{N'XD; using a shared projection matrix. As only N
inputs are active at any given time, composition of the projection layer is a relatively cheap operation.
The NNLM architectire becomes complex for computation between the projection and the hidden
layer, as values in the projection layer are dense. For a commo dqufafN _ I@he size of the
projection layer (P) might be 500 to 2000, while the hidden layer size H. is typically 500 to, 1000

{ units. Moreover, the hidden layer is used to compute probability distribution over all the words in the
vocabulary, resulting in an output layer with dimensionality V. Thus, the computational complexity
per each training example is

Q=NxD+NxDxH+HxV, 2

where the dominating term is H x V. However, several practical solutions were proposed for
avoiding it; either using hierarchical versions of the softmax [25, ?3},]&], or avoiding normalized

models completely by using models that are not normalized during training [4,9). With'binary tree

epresentations of the vocabulary, the number of output units that need to be evaluated can go down
to around [ogz (V). Thus, most of the complexity is caused by the term N x D x H. Hj man
Enm’m

In our models, we use‘hierarchical §6ftinax where the vocabulary is represented as 2 : nary
Wiree. This follows previous observations that the frequency of words works well for obtaining classes
in neural net language models [16]. Huffman trees assign short binary codes to frequent words, and
this further reduces the number of output units that need to be evaluated: while balanced binary tree
would require log.(V') outputs to be evaluated, the Huffman tree based hierarchical softmax requires
only aboutlog, (Unigram_perplexity(V)). For example when the vocabulary size is one million
words, this results in about two times speedup in evaluation. While this is not crucial speedup for
neural network LMs as the computational bottleneck is in the N x D x H term, we will later propose

architectures that do not have hidden layers and thus depend heavily on the efficiency of the softmax —
PP {
2.2 Recurrent Neural Net Language Model (RNNLM) ) LN

Recurrent neural network based language model has been proposed to overcome certain limitations
of the feedforward NNLM, such as the need to specify the context length (the order of the model V),
and because theoretically RNNs can efficiently represent more ¢ atteris than the shallow
neural networks [15, 2]. The RNN model does not have a projection layer; only input, hidden and
output layer. What is special for this type of model is the recurrent matrix that connects hidden
layer to itself, using time-delayed connections. This allows the recurrent model to form some kind
of short term memory, as information from the past can be represented by the hidden layer state that
gets updated based on the current input and the state of the hidden layer in the previous time step.

The complexity per training example of the RNN model is

Q=HxH+HxYV, . ; 3)

where the word representations D have the same dimensionality as the hidden layer H. Again, the
term H x V' can be efficiently reduced to H x log(V) by using hierarchical softmax. Most of the
complexity then comes from H x H.
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and predict words within a certain range before and :.- current word. We

. inuusingd:emngeimp:wuquaﬁtynf&cmlnng' word vectors, but it also increases

'SK!? G'H\M thcwmplmomlmmplzmy Since the more distant words are usually less related to the current
word than those close to i

L, we give less weight to the distant words by sampling less from those
words in our training examples.

The training complexity of this architecture is proportional to __ e NING

¢
Q= C x (D + D x loga(V)),\ ComPLEX T} ©)
where C is the maximum distance of the words. Thus, if wet
we will select randomly a number@ Q;CM
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4 Results :

Tocop:parethcqua]itynfdiﬂ'mtvmionsofwd
t_ih?wmgcxamplcwmdsandthdrmost

[Na v-:r. S?mUer.Examplc
ofammu'typgofrelaﬁonshi?canbcwm'dpair_sbig.-biggestandsmaﬂ-smdfen@].Weﬁnﬂmr GUISTI &
d:nmetwgpan?ofwordsmﬂ:thesamemhuonslnpasaqmsﬁon,aswecanukz "What is the A L Lo
wmlﬂlanssinnlarlosmallinﬂmsamesenscasbiggessissimilaﬂobig?" i—)RFU‘E"“’
Somewhat surprisingly, these questions can be answered b
with the vector

ResTiVe HERE.

> Yy performing simple algebraic operations i
representation of words. To find a word that is similar to small in the same sense as Cosire.
is similar to big, we can simply compute vectorl . ; : :
' %), Then, we search in the vector space for od | distonce.
ice, and usei(as&:answammequesﬁon(wediscm-dtheinwtquesﬁmwmds during this
arch). When the word vectors are well trained, itispmsibletoﬁtﬁthegurrmansw:r
smallest) using this method. hoh! ‘] EARPED  RpeemSHATion'
Finally, we found that when we train high dimensional word vectors on a large amount of data, the
Tesulting vectors can be used to answer v tic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors

i eman hips could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

.ll ( Stto
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Table 11 Examples . )
M%ﬁm&mﬁmm”“m#mwmhwm :

Type of relationship Word Pair | Word Pair 2 |
Common capital city | Athens Greece Oslo Norway
All capital cities Astana | Kazakhstan | Harare | Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago | Illinois | Stockton | California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent | apparently rapid rapidly
Opposite possibly | impossibly || ethical unethical .
casy easiest lucky luckiest

‘resent Farticiple think thinking read reading
Nationality Switzerland | Swiss || Cambodia | Cambodian

Past tense walking walked [ swimming swam

Plural nouns mouse mice dollar dollars

Plural verbs work works speak speaks

that contains five Jypes

'l

Table 1, Overall, al
in each category were created in two steps: first, a list snm'larwm'dpmrs
Thcn,slaxgeﬁstofquﬂﬁonsisformedbymnnwﬁngtwowmdpalrs. Foraxsmplc,wesnadca

: Iistof68lmgcAmcﬁcandﬁcsandmemmmeybdmgm,andfmmcda!meSKq:mﬁmmby
picking two w airs at random. We have included in our test set only single token words, thus
-u_l;-ni__ ord _:‘";if:‘:_-i-l present (mdl””m York).

Wecvalum&ovmﬂmmcyforaﬂqmsﬁmtypa,mdfwmhqmsﬁmﬁpewpmﬂy(w—
mantic, syntactic). Qucsﬁonisasmmudmbeconea]yansweredonlyiftheclosgsstwwdm.ﬂn
vecmrmmputedusingthcabovcmthodisaucﬂyﬂlesameasthemctwmdmﬂnq.uesuon;
synonyms are thus counted as mistakes. This also means that reaching 100% acamf:yisl.ih:ly
to be impossible, as the current models do not have any input information about
However, we believe that usefulness of the word vectors for certain applications should be positively
correlated with this accuracy metric. Further progress can be achieved by incorporating information
about structure of words, especially for the syntactic questions.

4.2 Maximization of Accuracy

used a Google News corpus for training the word vectors. This corpus contains about
. We havéires| abulary size to | million most frequent words,, Clearly, we
are Vu:l“t, ned optim onproblcm,ns canbeexpectedthatbothusingmdma

andg!ﬂchmmnmalwmﬂ\tﬁmwﬂl:mprwemeammcy To estimate the best choice of

model architecture for obtaining as good as possible results quickly, we have first evaluated models
trained on subsets of the training data, with vocabulary restricted to the most frequent 30k words. LA OF
The results using the CBOW architecture with different choice of word vector dimensionality and NG
increasing amount of the training data are shown in Table|2} Dimd st

It can be seen that after some point, adding more dimensions or adding more training data provides RETURNS
diminishing g mprgw So, we have to increase both vector dimensionality and the amount

of m?ﬁmm While this observation might seem trivial, it must be noted that it is

currently popular to train word vectors on relatively large amounts of data, but with insufficient size



thefmost frequent 30kavords are uséd.

| Dimensionality / Training words || 24M | 49M | 98M
50 134 | 157 | 186

100 194 | 23.1 | 27.8
300 232 | 292 | 353
600 24.0 | 30.1 | 365

S0 snnd 2013 coMTEX]

Table 3: Comparison of architectures using models trained on the same data, with 640

af vectorss, Thc} accuracies are reported on our Semantic-Syntactic Word Relationship test set,
and on the syntactic relationship test set of 20]

\ Model | Semantic-Syntactic Word Relationship test set || MSR Word Relatedness
Architecture H Semantic Accuracy [@] Syntactic AccEc;ﬁ(;]_— Test Set [20]
RNNLM 9 35
NNLM 47
CBOW e &
| Skip-gram S5 56

(such as 50 - 100). Given Equation @, increasing amoun
same increase of computational complexity as increasing vector
For the experiments reported in Tables/2/and 4, we used three training gpochs with stochastic gradi-
ent descent and backpropagation. We chose starting learning rate 0.025\and decreased it linearly, sO
that it approaches zero at the end of the last training epoch.

{ of training data twice results in about the
size twice.

43 Comparison of Model Architectures

First we compare different model architectures for deriving the word vectors using the same training
data and using thc same dimensionality of g(]_gﬂh:_w.an‘l—ms. In the further expcriments, We
use full set of questions in the new Semantic-Syntactic Word Relationship test set, i.e. unrestricted to

the 30k vocabulary. We also include results on a test set introduced in [20] that focuses on syntactic

How Hl\\)g similarity between words®}
—1eSE AoLE The training data consists of several LDC corpora and is described in detail in (18] (320M words,
| HE i 82K vocabulary). We used these data to provide 2 comparison to a previously trained rec

: “We trained a feed-

<
P\QLH T Uee peural network language model that took about 8 weeks to train on d'single CPU.
C I-)CE forward NNLM with the same number of 640 hidden units using the DistBelief parallel training [6],
g using a history of 8 previous words (thus, the NNLM has more parameters than the RNNLM, as the
projection layer has size 640 x B).

- Y
( HI‘ 5 In Table '3', it can beiseen that the word vectors from the RNN (as used in [20]) perform well mostly

on the syntactic questions. The vectors perform significantly better than the RNN - this is

not surprising, as the word vectors in the RNNLM are directly connected to a‘non-linear hidden

{layer. The CBOW architecture works better than the NNLM on the syntactic tasks, and about the
same on the semantic onc. Finally, the Skip-gram arc hitecture works slightly worse on the syntactic
task than the CBOW model (but still better than the NNLM), and much better on the semantic part
of the test than all the other models.

aluated our models trained using one CPU only and compared the results against publicly

Next, we ev ]
The comparison is given in Table 4. The CBOW model was trained on s ubset

available word veclors.

We thank Geoff Zweig for providing us the test sel.

4

Table 2:  Accuracy
vectors from fhf""CB-Oféj;r:::S-ﬂ of the 'Smfnar_uic-Symacﬁc Word Relationship test set, using word
itecture with limited vocabulary. Only questions containing words from

6Pu7?



Table 4: Comparison of publicly available

ahip doetwe il ond Gt - word vectors on the Semantic-Syntactic Word Relation-

models. Full vocabularies are used.

2 e
odel ~ Vector | Training Accuracy (%]
|| Dimensionality | words

e S | Semantic | Syntactic | Total
Collobert-Weston NNLM 50 660M 93 123 | 110
’“n'fﬂn NNLM 50 3™ 1.4 2.6 2.1
“"fﬂﬂ NNLM 200 IIM 14 22 1.8
Mnih NNLM 50 37M 1.8 9.1 5.8
Mnih NNLM 100 I7T™M 3.3 13.2 8.8
Mikolov RNNLM 80 320M 49 184 127
Mikolov RNNLM Ued0 320M 8.6 365 | 246
Huang NNLM 50 990M 133 1.6 | 123
Our NNLM 20 6B 12.9 264 | 203
Our NNLM 50 6B 27.9 558 | 432
Our NNLM 100 6B 342 |Qess. | 508
CBOW 300 783M 15.5 531 | 36.1

| Skip-gram 300  783M 55.9 _i

- ;ai

Table 5: Comparison of models trained for three epochs on the same data and models trained for
one epoch. Accuracy is reported on the full Semantic-Syntactic data set.

Model Vector Training Accuracy [%] Training time
Dimensionality | words [days]

Semantic | Syntactic | Total
3 epoch CBOW 300 783M 155 53.1 | 36.1 1
3 epoch Skip-gram 300 783M || 500 |“ 559 533
1 epoch CBOW 300 783M 13.8 499 | 336 03
1 epoch CBOW 300 168 || Ve, 526 | 36.1 0.6
1 epoch CBOW 600 783M 154 |\gs33 Yese2 07
1 epoch Skip-gram 300 783M 45.6 522 | 492 1
1 epoch Skip-gram 300 1.6B 522 |\551 | 538
1 epoch Skip-gram 600 783M || | 567 545 | 555 25

DeeReEPSE
of the Google News data in about a day, while training time for the Skip-gram model was about three LW“&G— RNTE
days.
- unepRY

For experiments reported further, we used just one training epoch (again, we decrease the learning
¢ rate linearly so that it approaches zero at the end of training). Training a model on twice as much
data using one epoch gives comparable or better results than iterating over the same data for three

epochs, as is shown in Table 5, and provides additional small speedup.

4.4 Large Scale Parallel Training of Models

As mentioned earlier, we have implemented various models in a distributed framework called Dis-
(Belief. Below we report the results of several models trained on the Google News 6B data set,
ittifmini-batch asynchronous gradient descentand the adaptive learning rate procedure called Ada-
1. We used 50 to 100 model replicas during the training. The number of CPU cores is an




Table 6: Comparison
- of models try; ;
training of NNLM with mew et 8. the DistBelif distipueq Jramework. Note thar

Mot | g €197 Would ake 100 fomg 1 conpler:
[ s x CPU cores)
’-‘_‘_\_\_‘_-_‘—-———4
NNLM [ g ] |
CBOwW 1000 6B
Ski
—Pgm] w0 | & |

T: ; i
able 7: Comparison and combination of models on the Mie

rosoft Sentence Completion Challenge.

% SEHEL Do we crosse woms gasep
Average LSA similarity (32) 49 I CONTERY, SR SANIT T
Log-bilinear model [24] 54.8 BASED oM woRDS
RNNLM:s [19) 55.4
Skip-gram 48.0
Skip-gram + RNNLMs 58.9

4.5 Microsoft Research Sentence Completion Challenge
The Microsoft Sentence Completion Challenge has been recently introduced as a task for advancing

ling and other NLP techniques [32]. This task consists of 1040 sentences, wheg
g in each sentence and the goal is to select word that is the most coherent wit]
° sentence, given a list of'five reasonable choices. Performance of several techniques has
been already reported on this set, including N-gram models, LSA-based model [32], log-bilinear
model [24] and a combination of recurrent neural networks that currently holds the state of the art
performance of 55.4% accuracy on this benchmark [19].

We have explored the performance of Skip-gram architecture on this task. First, we train the 640-
dimensional model on 50M words provided in [32]. Then, we compute score of each sentence in
the test set by using the unknown word at the input, and predict all surrounding words in a sentence.
The final sentence score is then the sum of these individual predictions. Using the sentence scores,
we choose lhe%

A short summary of some previous results together with the new results is presented in Table 7,
While the Skip-gram model itself does not perform on this task better than LSA similarity, the scores
from this model are complementary to scores obtained with RNNLMs, and a weighted combination
leads to a new state of the art result 58.9% accuracy (59.2% on the development part of the set and
58.7% on the test part of the set).

language mode

1}

5 Examples of the Learned Relationships

NTERESTING-
Table[8]shows words that follow various relationships. We follow the approach described above: the Y To TEST
relationship is defined by(subtracting two word vectors, and the result is added to another word. Thus W& _
for example, Paris - France + Italy = Rome. As it can be seen, accuracy is quite good, although FEPP-ESE\”'*W
there is clearly a lot of room for further improvements (note that using our accuracy metric that

9



Table 8:

of the word pg;
8ram model trained on 783M pair relationships, using the bess
words i Al word vect, 4
[T e e Relationsh: _.M‘meff‘ﬁ e mk@(&zpu
| Example | —
France - Paris -—“_—I—l;l;'-———__""" Example 2 Example 3
big - bigger small larger Japan: Tokyo | Florida: Tallahassee |
Miami - Florida || Bajgr cold: colder | quick: quicker
Einstein - sciemis hmore Maryland | Dallas; Texas Kona: Hawaii
Messi: midfielder | Mozart: violinist |  Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany | K ?I ! 5 ]
copper - Cu s ' g
Berluscon - §;] anc: Zn gold: Au uranium: plutonium
Microsoft - Sarkozy: Nicolas | Putin: Medvedev Obama: Barack
Windows || Google: Android | IBM:Linux |  Appie: iPhone
“‘“M, “Ballmer || Google: Yahoo | IBM: McNealy Apple: Jobs
|___~4pan - sushi Germany: bratwurst | ' France: tapas USA: pizza |

mmsmmlhcmmlmh'l‘abhwould about i

X 3| score onl %). We believe

xmmmmmhmaMsm wi iy - m

- wﬂ!mableﬂndevcl(pmtofncwinn applications. accuracy is

utmu!{mlhanomcxmmlcnfﬂgre‘lgﬁmﬂﬁp.Byusingtcncxmnplesinﬂmdofon:mfm

- Mmmw(wamcﬂmﬁpdwvmmgaha),wehawnbmim;mvm
HMyofmn'bﬁtmmicixby absolutely on the semantic-syntactic test.

llma]sopossﬂ:letoq:plythevmopaaﬁonsmsolvediﬂ'mﬂmks. For example, we have
good accuracy for selecting out-of-the-list words, by computing average vector for a list of

wmda.andﬁndmgthemontﬁmmdm This is a popular type of problems in certain human

intelligence tests. Clearly, there is still a lot of discoveries to be made using these techniques.

6 Conclusion

luIlﬁsp&_ape:wesﬂdiedﬂ:emmlhyofmrmpmsmmﬁonsofw{rdsdmivedbyvmious_moddson
sco%hd:on of syntactic and semantic language tasks. We observed that it is possible to train high
the

is possible to Very accu i
Using the DistB d : d be po: BOW and Skip-gram
models even on corpora with one trillion words, for basically unlimited size of the vocabulary, That
is several orders of magnitude larger than the best previously published results for similar models,

An interesting task where the word vectors have recently been shown to significantly outperform the
previous state of the art is the SemEval-2012 Task 2 [11]. The publicly ayailable RNN vectors were
used together with other techniques to achieve ov \crease in § pe: rman’s rank correlation
over the previous best result [31]. The neural netw ed vectors were previously applicd
to many other NLP tasks, for example sentiment analysis [12] and paraphrase detection [28]. It can

be expected that these applications can benefit from the model architectures described in this paper.

Our ongoing work shows that the word vectors can be successfully applied to automatic extension
of facts in Knowledge Bases, and also for verification of correctness of existing facts. Results
from machine translation experiments also look very promising. In the future, it would be also
mpare our techniques to Latent Relational Analysis [30] and others. We believe that
snsive test set will help the rescarch community to improve the existing techniques for

10
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After the initial versiq, i
n of this
code for computing the ol .
| - S lished - i Iti-threa
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