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ABSTRACT

We have used information-theoretic ideas to derive a class of prac-
tical and nearly optimal schemes for adapting the size of a neural
network. By 1 from a network, sev-

eral improvements can be expected: , fewer
training examples required, and #ﬂd/ﬂ
classification. The basic idea is to use second-derivative informa-

tion to make a tradeoff betweenmetwork complexity and training
\Sétietror. Experiments confirm the usefulness of the methods on a
real-world application.

1 INTRODUCTION

Most successful applications of neural network learning to real-world problems have
been achieved using highly structured networks of rather.lazge size [for example
(Waibel, 1989; Le Cun et al., 1990a)]. As applications become more complex, the
networks will presumably become even larger and more structured. Design tools% "
and techniques for comparing different architectures and minimizing the network "N 1N (2.
sise will be needed. More importantly, as the humber of parameters‘in the systems
increases, pvetfitting problems may arise, with devastating effects on the general-
formance. We introduce a new technique called Optimal Brain Damage
(OBD) for reducing the size of a learning network byw
We show that OBD can be used both as an automatic network minim 100 pro-
cedure and as an interactive tool to suggest better architectures.

The basic idea of OBD is that it is possible to take a perfectly reasonable network,
delete Half (or,more) of the weights and wind up with a network that works just as
well, or better. It can be applied in situations where a complicated problem must
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be solved, mdthelyltemlmntmnkeq:tlmllmeofnhnuledmntoftnlmn;
data. It is known from theory (Denker et al., 1987; Baum and Haussler, 1989; Solla

et al., 1990) and experience (Le Cun, 1989) that, for a fixed amount of training
data, networh with On the other hand.

networks with too few weights will not have enough power to represent the data
lccheumely The best generalization is obtained by trading off the iEsiningenror and
the network complexity.

One technique to reach t.hntndeoﬂ'utonnnunma_compuedoftwo
terms: the ordinary , plus some measure of the Wgtmeskysomplesity.
Several such schemes have proposed in the statistical inference literature [ue
(Akaike, 1986; Rissanen, 1989; Vapnik, 1989) and references therein] as well as in
the NN literature (Rumelhart, 1988; Chauvin, 1989; Hanson and Pratt, 1989; Mozer
and Smolensky, 1989).

Vl.noul oomplml.y measures have been proposed, including Vapnik-Chervonenkis

(Vapnik and Chervonenkis, 1971) and Ueseriptionilength, (Rissanen,
1989). A time-honored (albeit inexact) measure of complexity is nmply the number
of non-zero free parameters, which is the measure we choose to use in this paper
[but see (Denker Le Cun and Solla, 1990)). Exéeiparameters.are used rather than
connections, since in constrained networks, several connections can be controlled by
a single parameter.

In most cases in the statistical inference literature, there is so! jopior heuristic
information that dictates the order in which parameters should be deleted; for
example, in a family of polynomials, a smoothness heuristic may require higl:—order
terms to be deleted first. In a neural network, however, it is not at all obvious in
which order the parameters should be deleted.

A simple strategy consists in deleting parameters with small ¥saliency?, i.e. thoee
whose deletion will have tbep‘m Other things be-
ing equal, lmnll—magmtude ave saliency, 8o a reasonable
initial strategy is to train the network and delete small-magnitude parameters in
order. After deletion, the network should be retrained. Of course this procedure
can be iterated: in the limit it reduces to continuous weight=decay.during training
(using disproportionately rapid decay of small-magnitude parameters). In fact, sev-
eral network minimization schemes have been implemented using non-proportional
weight decay (Rumelhart, 1988; Chauvin, 1989; Hanson and Pratt, 1989), or “gat-
ing coefficients” (Mozer and Smoiensky, 1989). Generalization performance has
been reported to increase significantly on the somewhat small problems examined.
Two drawbuks of these techniques are that theyyrequire: ﬁna-m%oi the “prun-
; to avoid catastrophic effects, and also that the learning process
m'ugmﬁmtly slowed down. Such methods include the implicit hypothesis that

the appropriate measure of network complexity is the number of parameters (or
sometimes the number of units) in the network.

One of the main points of this paper is to move beyond the approximation that
“magnitude equals saliency”, and propose a theoretically justified saliency measure.
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Objective functions play a central role in this field; therefore it is

sonable to define the el

to be the -

(1)

Here, the &u;’s are the compone % t‘e 9i’8 are the components of the gradient
G of E with respect to U, and theh;j‘lmtheelemenuoftheﬂeuim matrix H
of E with respect to U: '

deleting several parameters is the sum of the §E’s caused by deleting each parameter
individually; cross terms are neglected, so third term of the right hand side of
equation 1 is discarded. Thefextremal” approximation assumes that parameter
deletion will be performed afte: dining hasiconverged, The parameter vector is
then at a (local)iBiEumGN B and the first term of the right hand side of equation 1
can be neglected. Furthermore, at a local minimum, all the A;;’s are non-negative,
80 any perturbation of the parameters will cause E to increase or stay the same.
Thirdly, the tic” approxima assumes that the cost function is nearly
quadratic so that the last term in the equation can be neglected. Equation 1 then
reduces to — R |
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2.1 COMPUTING THE SECOND DERIVATIVES

outline the procedure; details can be found in erences.

We assume the objective function is the “‘MN; general-
ization to other additive error measures is straightforward. The following expres-
sions apply to a single input pattern; aRerward £ and H must be“
Chenrsiningset. The rk state is computed using the

whm:;ilthelhteol'uniti.qiutohlinput(wdghted ), f th i
w w;; is the connection going from unit j to unit i. In am
ork like ours, a single parameter u; can control one or more connections: w;j =
ug for all (i, j) € Vi, where V; is a set of index pairs. By theghainiriile, the diagonal
terms of H are given by —— '

(5

(6)

)

derivative of E with re

%”.= 2f"(ai)? — 2di — 2)f"(ai) (®)

; Y

DT W 4
for all units i in the output layer. A it

be , computing the diagonal Hessian is of th ler of ‘ itw-.
:: :wﬁﬁm gradient. In some cases, the second term of the right hand side of

the last two equations (involving thejsecond derivative of f) cmbene;ler.;a;ll %
corresponds to the well-known [Lévenberg ,_..mm» BT A
interesting property of giving gupagiced positivceot matcs althe aiand desimbion.
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2.2 THE RECIPE
The OBD procedure can be carried out as follows:

1. Choose a reasonable mgtmorknareliitécture
2. Train the network until ajpessonable:solution-isiobtained
3. Compu

te the ) for each parameter
4. Compute parameter: Waahygui/2
5. Sort the ynliencymd

delete some low-saliency parameters
6. Iterate to step 2

Deleting a parameter is defined as setting it to 0 and freezing it there. Several
variants of the procedure can be devised, such as decreasing the values of the low-
Slisncyaparameters instead of simply setting them to 0, or allowing the deleted
parameters to adapt again after they have been set to 0.

2.3 EXPERIMENTS

The simulation results p\renmthuoectxon were obtained usin
applied

- The initial network was ]n;h]y constumed WoAH

trolled b e EBaraeter ™ HATS So
It was trained on a database of segmented handwritten znpcode djgns nnd pnnted Few
digits containing approximately 9300 training e.:nmplel and :

More details can be obtained from the companion paper (Le Cunet 1090b) |
16.
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Figure 1: (a) Objective function (in dB) versus number of parameters for OBD
(Jower curve) and magnitude-based parameter deletion (upper curve). (b) Predicted
and actual objective function versus number of parameters. The predicted value
(lower curve) is the sum of the saliencies of the deleted parameters.

Figure 1a shows how thewbjecti on inc o5 (
number of remaining pa.rn.mcterl de-cmnes lt is clear that deleting parameters by
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order of saliency causes a significantly smaller increase of the objective function than
deleting them according to their magnitude. Random deletions were also tested for

the sake of comparison, but the performance was so bad that the curves cannot be
shown on the same scale.

Figure 1b shows how the objective function increases (from right to

imation. Good agrement is obtained for up
to approximately 800 deleted parameters (approximately 30% of the parameters).
B‘W“‘! that point, the curves begin to split, for several reasons: the off-diagonal
terms in equation 1 become disproportionately more important as thejumber of
deleted parameters increases, and higher-than-quadratic terms become more impor-
tant when jarger-valued parameters are deleted. '
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Figure 2: Objective function (in dB) versus pumber of parameters, without re-
training (upper curve), and after retraining (lower curve). Curves are given for the
training set (2) and the test set (b). : .

Figure 2 shows the log-MSE on th§jtraining eet,and the on the test set before and
after retraining. The performance on the training set and on the test set (after
retraining) stays almost the same when up 10500 parameters (60% of the total)

‘are deleted.

We have also used OBD as an interactive tool for network design and analysis.
This contrasts with the usual view of weight deletion as a more-or-less automatic
procedure. Specifically, we prepared charts depicting the saliency of the 10,000
parameters in the digit recognition network reported last year (Le Cun et al., 1090b).
To our surprise, several large groups of parameters were expendable. We were
able to excise the second-to-last layer, thereby reducing the number of parameters
by a factor of two. The ‘training se increased by a factor of 10, and the
generalization MSE increased by only 50%. The 10-category classification error
on the test set actually decreased (which indicates that MSE is not the optimal
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. ted :
can be seen by comparing the 2600- S Srhiiacru Shangm, =

parameteinetwork in (Le Cun et al, 1
in (Le Cun et al., 1990b) ( N Lo

3 CONCLUSIONS AND OUTLOOK

of more than two by using OBD to delete automatically. The net-
work’s speed improved significantly, and its recognition accuracy increased slightly,
We emphasize that the starting point was a state-of-the-art network. It would be
100 easy to start with a foolish network and make large improvements: a technique
can help improve an already-good network is particularly valuable.

We believe that the techniques presented here only scrate

h the surface of the appli-
cations -mmom can and should be used. In particular,
we have also been able to move beyond the approximation that !

er of free parameters” by using secon
CunnndSoﬂg,lWO),nuseittotodenum'
information content, or complexity.
tures on a given task, and makes contact with the notion of Minimum Description
Length (MDL) (Rissanen, 1989). The main idea is that a “simple” network whose
description needs a small number of bits is ikely o'generalize-correctly than
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