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ABSTRACT

Learning an algorithm from examples is a fundamental problem that has been
ddressed using neural networks too, in particular by
( IMs), These are fully differentiable computers that
1 (0 learn their own programming. Despite their appeal NTMs
have a weakness that is caused by their sequential nature: they are not parallel and
are are hard to train due to their large depth when unfolded.

We present a neural network architecture to address this problem: the Neural
GPU. It is based on a type of convolutional gated recurrent unit and, like the
NTM, is computationally universal. Unlike the NTM, the Neural GPU is highly
parallel which makes it easier to train and efficient to run.

An essential property of algorithms is their ablluy to hand]e mputs of arbitrary
size. We show that the Neural GPU can be (trained t mstance
gorithmic task and successfully @ene ;;_ ¢ to long instz We venﬁed itona
number of tasks including long addition and Io ion,of numbers rep-
resented in binary. We train the Neural GP on numbers with _up-to 20 bits and

observe no errors whatsoever while testing it, even on much longer numbers. E\RI\METF R
To achieve these results we introduce a technique for training deep recurrent net- S HARING

and gradient noise to have a large positive effect on learning and generalization.

1 INTRODUCTION

Deep neural networks have recently proven successful at various tasks, such as@omputcr Visit
(Krizhevsky et al., 2012)'s an ; (Dah] etal., 2012), and in other domains. Recurrent
neural networks based on lo 3 @S%ceﬂs (Hochrcxter & Schmidhuber, 1997)
have been successfully applied to a a number of natural language processing tasks. ‘Sequqme-m-
current neural networks with such cells can learn very complex tasks in an end-to-end
mm;ner such as translation (Sutskever et al., 2014; Bahdanau et al., 2014; Cho et al., 2014), parsing
(Vinyals & Kaiser et al., 2015),speech Mogm%on (Chanetal,, 2016) or image caption generation
(Vinyals et al., 2014). Smce so many tasks can be solved wuh essentially one model, a natural
question arises: is this model the best we can hope for in supervised learning?

Despite its recent success, the sequence-to-sequence model has limitations. In its basic form, the
entire input is encoded into a single fixed-size vector, so the model cannot generalize to inputs much
longer than this fixed capacity. One way to resolve this problem is by using an attention mechanism
(Bahdanau et al., 2014). This allows the network to inspect arbitrary parts of the mpqt in every de-
coding step, so the basic limitation is removed. But other problems remain, and Joulin & Mikolov
(2015) show a number of basic algorithmic tasks on which sequence-to-sequence LSTM networks
fail to generalize. They propose a stack-augmented recurrent network, and it works on some prob-
lems, but is limited in other ways.

" Inthe best case one would desire a neural network model able to learn arbitrarily complex algorithms

given enough resourccs@kural Turing Machines (Graves et al., 2014) have this theoretical property.

However, they are not computationally efficient because they use soft attention and because they tend
to be of considerable depth. Their depth makes the training objective difficult to.optimize and im-
possxble to parallelize because they are learning a sequential program. Their use of soft attention
requires‘accessing the entire memory in order to simulate 1 step of computation, which introduces

. substantial overhead. These two factors make learning complex algorithms using Neural Turing Ma-
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chines difficult. These issues are not limited to Neural Turi

urin i
tures too, such asstack-RNNs,(Joulin & Mikolov, 2015) ok N&Eﬁfﬁﬁ” i Al
2015). an can try (o alleviate these problems using hard attention and reinf " (G“fensme i
such non-differentiable models do not learn well at present (Zaremba & Sutsl?erslerngr(l)tllgg)mm & ot

In this work we present a neural network model, the Neural GP

ITE isa Tunng—comple(g model capable of learning arbitrary algg';ﬂtﬂ?)tsaiﬂd;is;;‘spﬁe faikb:vell\ls sue:l.

shu:llng Machine. But, in contrast o Neural Turing Machines, it is designed to be as 'pamllal o
ow as possible. Itis more similar to a GPU than to a Turing machine since it uses a al‘l" ey

ber of parallel computational steps. We show that the Neural GPU works in multiple e;r:eﬁ:]relrlx?-

e A Neural GPU can learn long binary multiplication from examples. It is the first neural

qyts_vork able to learn an algorithm whose run-time is superlinear in the size of its input.
rained on up-to 20-bit numbers, we sce 10 single errorion any inputs we tested, and we

tested on numbers up-to 2000 bits long.
ng binary ad{lmitigil and a number of other algorith-

e The same architecture can also learn /o
mic taSkS, such ine. copying se

nce

1.1 RELATED WORK

thms with neural networks has seen a lot of interest after the success
quence neural networks on language processing tasks (Sutskeveretal., 2014;
014; Cho et al., 2014). An attempt has even been made to learn to evaluate sim-
a pure sequence-to-sequence & Sutskever, 2015a), but
th more complex models. [Neural 'l (Graves et al., 2014)
of basic sequence transformation and memory access patterns, and
7Zaremba & Sutskever, 2015b) has reasonable performance on
1e and DeQu "'w;;jjg’tlydfﬂks‘*@refenstettc et al., 2015) were also
"such as bigram flipping or sequence reversal.
16) is another powerful architecture that can learn to mul-
ill see in the next section, the Grid-LSTM is quite similar
Neural GPU is less recurrent and is explicitly

The learning of algori
of 5 um e 0-sequet
Bahdanau et al.,
ple python programs with
more Success was seen wi
were shown to learn a number
their reinforcement learning variant

2 number of tasks as well. § Que
shown to learn basic sequen

TheGrid L chbrenner et al., 20

tiply 15-digit decimal numbers. As we W
to the Neural GPU — the main difference is that the
constructed from the highly parallel convolution operator.
In image processin. conv plutional LSTI % an architecture similar to

been used for weather ISi'e"diéﬁon’(Shi et al., 2015) and image compression
We find it encouraging as it hints that the Neural GPU might perform well in 0
Most comparable to this work are the prior experiments with the t;;t:__:ck—,augmented RNNs
(Joulin & Mikolov, 2015). These networks manage to learn and generalize to unseen lengths on
a number of algorithmic tasks. But, as we show in Section 3.1,$m$k-augmenwd RNNSs trained to
-add numbers up-to 90-bit long generalize only to ~100-bit numbers, never to 200-bit ones, and
sation is the best we were able to obtain without using the

a,».fiéver without error, Still, their generali
Neural GPU and far surpasses a baseline LSTM sequence-to-sequence model with attention.
thms has been pursucd(much more widely with tools other than neu-
induction, automatic

The quest for learning algori !
ral networks. It is known under names such a§ program synthesis, program
programming, or inductive synthesiilgland has a long history with many works that we do not cover
here: see, ¢.g., Gulwani (2010) and Kitzelmann (2010) for a more general perspective.
thm forﬁoné binari additi onl let us recall how
ks. Importantly, there are two €ases of this

synthesis of an algori
d without neural networ
hen the two numbers that are to be added
ber is presented at the same

The easier case 18 W
bit of the first num
d bits, and so on, as depicted below
significant bit left.

the Neural GPU, have recently
(Toderici et al., 2016).
ther contexts.

Since one of our results is the
this problem has been addresse
problem with different complexity.
are aligned at input, i.c., if the first (lower-endian)
time as the first bit of the second number, then come the secon
forg=9=8+1landy=5=4+1 written in binary with least-

Input 170]0]1
(z and y aligned) 1/]0|1]0 c’.i
DesiredOutput (z+y) [0 [ 1[1]1
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In this representation the triples of bits from (z, v, z+y).eg.,(1,1,0) (0

as in the figure above, form a regular languag::. To learn bi LLO 001011 (1,0,1
therefore suffices to find 2 regUlaFExpressioor

be done with a variant of fAng orithm) (An,

have regular representatiohs, 3 ample long multiplication. does not (Blumensath & Gridel

2000). Tt is therefore desirable to learn long binary addition without alignmen
and y are provided one after another. This is the representation we use in the ;ig;::‘;:‘pge when z

)

nary addition in this representation it
taccepts this language, which can
- But only few interesting functions

Input (z, y) TTOJO[ L[+ ]1]O0T1
Desired Output (x+9) [0 | 1| 1] 1

0

2 THENEURAL GPU - C w,og:}oummb kERUEL. BANKs
S

Be we introduce the Neural GPU, let us recall the architecture of a{Gat rrent |
GRU), (Cho et al., 2014). A4GRU i similar (o an-LSTM; but its input and state are the same (3R @)

size, whgch makes it easier for us to generalize it later; a highway network could have also been

used (Srivastava et al., 2015), but it lacks the reset gate. GRUs have shown performance similar to

LSTMs on a number of tasks (Chung et al., 2014; Greff et al., 2015). A GRU takes an input vector
z and a current state vector s, and outputs:

GRU(z,5) = uQ@s+(1—u)©tanh(Wz+U(r© s) + B), where FUNeg‘::j
u=o(W'z+U's+B') and r=0(W'z+U"s+B").

i .
y Al
- 1

In the equations above, W, W', W J" are matrices and B, B, I  bias vectors; these
ill be learned. We write Wz for a matrix-vector multiplication

are the parameters that : andr®s

for elementwise vector multiplication. The vectors u and r are called gates since their elements are

in [0,1] — wis the update gatg and r is the reset gate.

In recurrent neural networks a unit like GRU is applied at every step and the result is both passed as

new state and used to compute the output. In a Neural GPU we do not process a new input in every

step. Instead, all inputs are written into the §tarting)§tatessos T his state has 2-dimensional structure:

it consists of w X h vectors of m numbers, 1.¢.,it1s a 3-dimensional tensor of shape [w, h, m]. This

ool age evolves in time in a way defined by ajconvolutional gated r¢ Lunit: co )J\b\UTl ONAL.
CGRU(s) = u®s+(1—u)®tanh(U*(r®s)+B), G-RU
u=o(U'+s+B') and r= o(U" * s+ B").

U * s above denotes the -onvolution of wel bankdy with the mental image s. A kernel bank is a
4-dimensional tensor of shape [Ew, kx, m,m].1.€., it contains k_w_-!‘c',ﬁnig@mm, where ky, and KerneL RANS
ky, are kernel width and height. It is applied to a mental image s of shape [w, h, m] which results in

another mental image U * s of the same shape defined by:

lkw/2]  Lka/2] m S=IRIDE (1\

Ussoied] = Y. Y dsktuwyrud-Uvei T S
u=|—ky /2] v=|—kn/2] e=1

___-—-—/‘. 3 Center ) j\___—" . ° N2

In the equation above the index T + % might sometimes be negative or larger than the size of s, and |30~ KERPE=L

in such cases we assume the value is 0. This corresponds to the standard convolution operator used RETAVIAN DURING-

in convolutional neural networks withizero padﬂ'f‘ng on both sides ang stride 1. Using the standard ACK P WO

operator has the advantage that it is heavily optimized (see Section 4 for Neural GPU performance). o

New work on faster convolutions, e.g., Lavin & Gray (2015), can be directly used in a Neural GPU.

Knowing how a CGRU gate works, the definition of a [-layer Neural GPU is simple, as depicted in
Figure 1. The given sequence i = (i1, - -,n) of n discrete symbols from {0, ..., I} is first em-
bedded into the mental image 8¢ by concatenating the vectors obtained from an embedding lookup
of the input symbols into its first column. More precisely, we create the starting mental image sg of
shape [w,n, m] by using an embedding matrix E of shape [I,m] and setting 50[0, k,:] = E[ix] (in
python notation) for all k=1...n(hereiy,...,inis the input). All other elements of sg are set to
0. Then, we i i mental image Sgy!
C6-RL PRoDUCT IO

o= FINKL MENTAL
(Mp s
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Figure 1:NcmalGPUwith2hymmdwidlhw=3d’ol&di7-&

Thcrcsullo[a.NcmnlGﬂlunvduoedbymduplymguchlu--hﬁuc_dgly

“-

lonf-ctn-, compute a softmax
over the logits I, anduse of the target as II:I:;"’c '
SmccallcomponenuofaNemalGPUmclnﬂydxﬂ'emmble

(Kingma & Ba, 2014) with & = 10~ and gradiets ¢

settol = 2, the width of mental images was constant at w = 4, the mumbe: of maps in each mental
image point was m = 24, and the convolution kernels width nd height was always ky, = ky = 3.

Computational power of Neural GPUs. While the above definition is simple, it might not be
immediately obvious what kind of functions a Neural GPU can

menmnb
be able 1o perform long multiplication? To answer such it is useful to draw an analogy
T e S 7
and the lack of a gating mechanism GPUs. Of course

these are large exceptions. Dcmmmumhwdmmmyh discrete PAR SN
suwsmmem“-uﬂalﬂ“”hm But the SO A
computational power of cellular automata is much better understood. In particular, it is well known T AGTONOM
thatucdlulnaummmexﬂmmmﬂdlmtondnﬁyma—hlm-O(a)wp

using"Atrubin’s algorithm. We recommend the online book (Vivien, 2008) to get an understanding

of this algorithm and the computational power of cellular automata.

3 EXPERIMENTS

In this section, we mmcxpcnmunnhowmglhuNeuﬂGPUmdelyknambn
of algonithmic tasks

two tasks we focused on, long
the generality of the model, wcsbowthalthanPUtpﬂﬁlmwdlmnvetﬂolhﬂmbuwdl

3.1 ADDITION AND MULTIPLICATION

Thcmomusksmwhchncsmdydnpcﬂmmmcd\cuﬂﬁﬂ,smh:ghw)ukinon
and long binary multiplication. We chose them because they are fundamental tasks and because

thcrclsnoknownhnurnmcalmdnnfulmgmduplm As described in Section 2, we
mpun sequence of discrete symbols into the network and we read out a sequence of symbols

again. For binary addition, we use a set of 4 symbols: {0, 1, +, PAD} and for multiplication we use
{0,1,-,PAD}. The PAD symbol is only used forpaddmgsone depict it as empty space below.

Long binary addition (badd) |s(hcuskdukhnglwomnnh:nltmnkdm
binary notation. We :lwnpaddnumbcnoﬁhcum:lcngth.lluwcallowlhmbha\tﬁalsnﬂ

mbers iffering lengths can be padded 1o equal size. Given two d-bit numbers the full
.sequence length +@8scen in the example below, representing (14 4) + (2+4+8) =
5+l4=19=(16+2+1).
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LETS SEE WHAT
ELSE (T oA DO"

Table 1: Neural GPU, stackRNN, and LSTM+A results on addition and multiplicati
5 ’ » u . ’I‘h
shows the fraction of test cases for which every single bit of the model’s outputli)s“c:?)rr(:::t. e

Input |1 |O |1 [0+ |01 1|1
Output [ I [1]0]O |1

Long bumry multiplication (bmul) is the task of multiplying two binary numbers, represented
“lower-endian. Again, we always multiply numbers of the same length, but we allow them to have 0s
at start, s bers of differing lengths can be padded to equal size. Given two d-bit numbers, the
full'seque othis againn = 2d+1, as seen in the example below, representing (2+4)- (2+8) =
6-10=60=32+16+8+4.

mput [O[1[1JO]-[O]1[O]f1
Output [O[O |1 [1]1

Models. We compare three different models on the above tasks. In additi;)n to the Neural GPU 26k vs. 200K
we include a baselinel:STM recurrent neural network with afi atte nechanism.: We call this
model LSTM#A as it is ¢ s‘cf%%d in (Vinyals & Kaiser et al., 2015). Itis a PARAMETERS
&lm@e_l_,with 64 units. in each LSTM cell in each layer, which results in about 200k param-
eters (the Neural GPU uses = 24 and has about 30k paramters). Both the Neural GPU and
the LSTM+A baseline were trained using all the techniques described below, including curriculum CURRICULY M
E RAD IE‘J‘( training and gradient noise. Finally, on binary addition, we also include the stack-RNN model from RIS~
NOISE Toulin & Mikolov, 2015). This model was not trained using our training regime, but in exactly the TRA!
way as provided in its source code, only with nmaz = 41. To match our training procedure, we ran
it 729 times (cf. Section 3.3) with different random seeds and we report the best obtained result.

Results. We measure also the rate of fully correct output sequences and report the results in Ta-
ble 1. For both tasks, we show first the error at the maximum length seen during training, i.e., for
90-bit numbers. Note that LSTM+A is not able to learn long binary multiplication at this length, it
does not even fit the training data. Then we report numbers for sizes not seen during training.

As you can see, a Neural GPU canlearn a multiplication algorithm tha ralizes perfectly, at least
as far as we were able to test (technical limits of our implementation prevented us from testing much
above 2000 bits). Even for the simpler task of binary addition, stack-RNNs work only up-to length
100. This is still much better than the LSTM+A baseline which only generalizes to length 25.

3.2 OTHER ALGORITHMIC TASKS
In addition to the two main tasks above, we tested Neural GPUs on the following simpler algorithmic
tasks. The same architecture as used above was able to solve all of the tasks described below, i.e.,

aftter being trained on sequences of length up-to 41 we were not able to find any error on sequences
on any length we tested (up-to 4001).

Copying ?eguegces is the simple task of‘producing on output the same sequence as on input. It is
very easy for a Neural GPU, in fact all models converge quickly and i
ge q y and generalize perfectly. HaGd Qo(c,lCLY ?

_Reversing sequences s the task of eversing a sequence of bits, n is the length of the sequence.

r'<4
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mcl_a_t%mms is the task o duplicating the input bit se ce on outp m&
example below. We use the padding symbol on input to make it “dtience on output twicepas in the
. t .

on sequences of inputs up-to 20 bits, so outputs “lr)cre up-to Z(l)-tt)?tztfgnthe o‘:itp“‘ length. We trained
2000 bits long. 2, and tested on inputs up-to

Input [OJOTT1T1
Output |0 [O[T[T[O[O[1[1

Counting by sorting bits is the task of §orting the i .

RUTER ) > .
pﬂy 2 symbols to sort, this is a counting tas ?Lﬁemwh%ﬁ%L Su(:)ce the.re e
input and produce the output accordingly, as in the example below. any Os are in the

Input | 1JOJIJIJO]JO]1]O
Output [O|O[O0O[O0O[T]T1]1

e

3.3 TRAINING TECHNIQUES

Here we describe the training methods that we used to im; i

prove our results. Note that we applied
these methods to the LSTM+A baseline as well, to keep the above comparison fair. We foglps on
the.mo_st important elements of our training regime, all less relevant details can be found in the code
which is released as‘open-source.

Each result we report is obtained by‘running a grid search over 3¢ = 729 instances. ¥ clo.xaf‘ 10
e consider 3 settings gf' the learning rate, initial parameters scale, and 4 other hyperparameters Pu (( tocte~
discussed below: the tdﬁﬁanpnﬂfactomcmculmn progress threshold, gradient noise scale, and
~dropout: An impoﬁantﬁfect of running this grid search is also that we train 729 models with differ- coluim
ent random seeds every time. Usually only a few of these models generalize to 2000-bit numbers, e
but a significant fraction works well on 200-bit numbers, as discussed below. P rc§t‘ess +h

{0l
urriculum learning| We use a curriculum learning approach inspired by Zaremba & Sutskever
“This means that we train, e.g., on 7-digit numbers only after crossing a curriculum pro
e -(e.g., % fully correct outputs) on 6-digit numbers. However, with 20% proba bﬂ@
digit numbers,with d chosen uniformly at random between 1 and 20.

Gradients noise.\ To improve training speed and stability we add noise to grad:ents in each training
“5tep: Inspired by the schedule from Welling & Teh (2011), we add to gradients a noise drawn from

the 0 vith mean 0 and variance inversely proportional

d O

| to the square root of step-

. (i.e., with standard deviation proportional to the 4-thoot of step-number). We multiply this

“hoise %by the gradient noise scale and, to avoid noise in converged models, we also multiply it by the
fraction of non-fully-correct outputs (which is 0 for a perfect model).

Gate cutoff. | In Section 2 we defined the gates in a CGRU using the sigmoid function, e.g., we
wrote u = o(U’ * s + B'). Usually the standard sigmoid function is used, o(z) = To=s- We
found that adding a hard threshold on the top and bottom helps slightly in our setting, so we use
1.20(z) — 0.1 cut to the interval [0, 1] i.e., o'(z) = max(0, min(1, 1.2¢(z) — 0.1)).

3.3.1 DROPOUT ON RECURRENT CONNECTIONS 1 .
V&P\Q+\d (\0\\

Dropout is a widely applied technique for regularizing neural networks. But when applying it to &\"OPOU't
recurrent networks. it has been Counter-productive to apply it on recurrent connections — it only

worked when applied to the non-recurrent ones, as reported by Pham et al. (2014).
Zoneaut

Since a Neural GPU does not have non-recurrent connections it might seem that'dropout will not
be useful for this architecture. Surprisingly, we found the contrary — it lis useful and improves

« generalization. The key to using dropout effectively in this setting is to set a small dropout rate.

When we run a grid search for dropout rates we vary them between 6%, 9%, and 13.5%, meaning
that over 85% of the values are always preserved. It turns out that even this small dropout has large

IThe code is at https://github.com/tensorflow/models/tree/master/neural gpu

reshold
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effect since we apply it to the whole mental ima i
: LA " e £¢ 8; m each step 4. uma
leamns to include some YN its internal repr'esenlation affm%:gt I:;t:(f)fk now
; n romit,

W”qhout. dropout we usually see only a few models from
while with dropout it is a much larger fraction and they g

3.3.2 PARAMETER SHARING RELAXATION,

ic;ﬁmlllprovi:plinflizuation o{ our deep network we use Q;relaxwﬂ' ion, technique for shared
¢l works as lollows. Instead of training with meters sh; i

\ : parameters shared across time-st

identical sets of noq-shared parameters (we often usé £ = 6, larger numbers work ;gste:vgulis;:
more memory). At time-step ¢ of the Neural GPU we use the i-th setift modr =4

"5;111; procedure described‘ above relaxes the network, as it can now perform different operations in
erent ume-steps. Training becomes easier, but we now have r parameters instead of the single

shared set we want. To unify them we fdd a term o the cost function representing the distance

of each parameter from the average of this paran;eter m all the 7 sets. This term in the final cost

parametery< g | ¢ o\J\‘\’ A

function is multiplied by a scalar which we call th 7 i i
Ge d by ar which we ¢ relaxation pull. If the relaxation pull is 0, the
&A&U‘ LLEY network behayes as if the r parameter sets were separate, but when it is large, the cost forces the
) S network to unify the parameters across different set.
RE LANNTIO During training, we gradually increase th‘eﬁgmonpu’ﬂ. We start with a small value and every time
g ULL the curriculum makes progress, e.g., when the model performs well on 6-digit numbers, we multiply

dehe relaxation pull by a relaxation pull factor. When the curriculum reaches the maximal length we
verage the parameters from all sets and continue to train with a single shared parameter set.

This method i§ erucial for learning multiplication. Without it, a Neural GPU with m = 24 has
trouble to even fit the training set, and the few models that manage to do it do not generalize. With
relaxation almost all models in our 729 runs manage to fit the training data.

= puh FAIC

4 DISCUSSION

We prepared a video of the Neural GPU trained to solve the tasks mentioned above.2. It shows
the state in each step with values of —1 drawn in white, 1 in black, and other in gray. This gives
an intuition how the Neural GPU solyes the discussed problems, e.g., it is quite clear that for the
duplication task the Neural GPU learned to move a part of the embedding downswards in each step.

What did not work well? For one, using decimal inputs degrades performance. All tasks above can
casily be formulated with decimal inputs instead of binary ones. One could hope that a Neural GPU
will work well in this case too, maybe with a larger m. We experimented with this formulation and
 were worse than when the representation was binary: we did not manage to learn long
”ﬁﬁ]i'caﬁon»&gncreasing m to 128 allows to learn all other tasks in the decimal setting.

_

Another problem is that of ten gnly a few modelsina 729 grid search generalize to very long unseen F27- G IS
(instances. Among those 729 models, there usually are many models that generalize to 40 oreven 200~ =y » 4+
bits, but only a few working without error for 2000-bit numbers. Using dropout and gradient noise '
improves the reliability of training and generalization, but maybe another technique could help even
more. How could we make more models achieve good generalization? One idea that looks natural
is to try to reduce the number of parameters by'decreasing m. Surprisingly, this does not seem to
have any influence. In addition to the m = 24 results presented above we ran experiments with
m = 32,64,128 and the results were similar. In fact using m = 128 we got the most models to
generalize. Additionally, we observed that ensembling a few models, just by averaging their outputs,

helps to generalize yensembles of 5 models almost always generalize perfectly on binary tasks.

Why use width? The Neural GPU is defined using two-dimensional convolutions and in our exper-
iments one of the dimensions is always set to 4. Doing so is not necessary since a one-dimensional
Neural GPU that uses four times larger m can represent every function representable by the original
one. In fact we trained a model for long binary multiplication that generalized to 2000-bit numbers
using a Neural GPU with width 1 and m = 64. However, the width of the Neural GPU increases the

2The video is available at https : / /www.youtube .com/watch?v=LzC8NkTZAF4
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W | 10.6s on an NVI] Amm . u_\eu).’
¢ were also surprised by how data-efficient a Neural GPU can be. Th i
! 2\ . Lhe experiments ted
above were all perfom;ed using 10k random training data examples for each ugiening lr:mg‘t"hes;?mcc
We train on up-to 20-bit numbers this adds to about traini i :

see
Te were models that generalized well to 200-bit

numbers and to all lengths below all training ged i

good model for TR training set. But we never managed to train a

5 CONCLUSIONS AND FUTURE WORK

The results presented in Table 1 show clearly that there is a qualitative difference between what can
be achieved with a Neural GPU and what was possible with previous architectures. In particular, for

the first time, we show a neural network that learns a'non-trivial superlinear-time algorithmin a way
that generalized to much higher lengths without errors.

This opens the way to use_neural networks in domains that were previously only addressed by
discrete methods, such a§ program synthesis. With the surprising data efficiency of Neural GPUs it
could even be possible to replicate previous program synthesis results, e.g., Kaiser (2012), but in a
more scalable way. It is also interesting that a Neural GPU can le mbolic : 1 1

using any discrete state at all, and adding dropout and noise only improves its performance.

Another promising future work is to apply Neural GPUs to language processing tasks. Good
results have already been obtained on translation with nvolutional architecture over words
(Kalchbrenner & Blunsom, 2013) and.adding gating and recursion, like in a Neural GPU, should
allow to train much deeper models ‘withs tting. - Finally, the parameter sharing rclaxzm?n
technique can be applied to any deep recurrent network and has the potential to mmprove RNN train-
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