arXiv:1409.0473v7 [cs.CL] 19 May 2016

Published as a conference paper at ICLR 2015

L ]

Tm R 6.0 9= i i v

e
[
L
x
.
L

& £ Y o

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE
RESSARCH @

SERVILENa W
Dzmitry Bahdanau
Jacobs Univ&sily Bremen,
PRoF&ESSOR PROFESSCR
NYu UMIVERSITY ormuTRErN..
Cho  Yoshna Bengio®
Université de Montréal

ABSTRACT

Neural machine translation is a recently proposed approach to machine transla-
tion. Unlike the traditional statistical machine translation, the neural machine
translation aims at building a single neural network that can be jointly tuned to
maximize the translation performance. The models proposed recently for neu-
ral machine translation often belong to a family of éncoder—decoders and encode

a source sentence into a fixed-length vector from which a decoder generates & o Rt ~searely

translation. In this paper, we conjecture that the use of a fixed-length vector is a

bottleneck in improving the performance of this basic encoder—decoder architec- EArrenTiod)

ture, and propose to extend this by allowing a model to automatically (soft-)search
for parts of a source sentence that are relevant to predicting a target word, without
having to form these parts as a hard segment explicitly. With this new approach,
we achieve a translation performance comparable to the existing state-of-the-art
phrase-based system on the task of English-to-French translation. Furthermore,
qualitative analysis reveals that the (soft-)alignments found by the model agree
well with our intuition.

1 INTRODUCTION

Neural machine translation is a newly emerging approach to machine translation, recently proposed
by Kalchbrenner and Blunsom (2013), Sutskever et al. (2014) and Cho et al. (2014b). Unlike the
traditional phrase-based translation system (see, e.g., Koehn et al, 2003) which consists of many
small sub-components that are tuned separately, neural machine translation attempts to build and
train a single, large neural network that reads a sentence and outputs a correct translation.

Most of the proposed neural machine translation models belong to a family of encoder-
decoders (Sutskever et al., 2014; Cho et al., 2014a), with an encoder and a decoder for each lan-
guage, or involve a language-specific encoder applied to each sentence whose outputs are then com-
pared (Hermann and Blunsom, 2014). An encoder neural network reads and encodes a source sen-
tence into a fixed-length vector. A decoder then outputs a translation from the encoded vector. The
whole encoder—decoder system, which consists of the encoder and the decoder for a language pair,
is jointly trained tojmaximize the probability of a correct translation given a source sentence.

A potential issue with this encoder-decoder approach is that a neural network needs to be able to
compress all the necessary information of a source sentence into a fixed-length vector. This may
make it difficult for the neural network to cope with long sentences, especially those that are longer
than the sentences in the training corpus. Cho et al. (2014b) showed that indeed the performance of
a basic encoder—decoder deteriorates rapidly as the length of an‘input sentence increases.

In order to address this issue, we introduce an extension to the encoder-decoder model which learns
to align and translate jointly, Each time the proposed model generates a word in a translation, it
(soft-)searches for 4 set of positions.in a source sentence where themost relevant information is
concentrated. The model then predicts a target word based on the context vectors associated with
these source positions and all the previous generated target words.
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2 BACKGROUND: NEURAL MACHINE TRANSLATION

el -
Fhrq e From a probabilistic i o ; . ‘]
o iy 1SUC perspective, translation is equivalent to finding a sentence y that max- Mo (y
"P'mmth mmizes the conditional probability of y given a source sentence x, i.c. 4 [13)% In i Yﬁ? J

?ﬁl machine translation, we fit a'parameterized. model to maximize the conditional probability

Sentence pairs using a parallel training corpus. Once the conditional distribution is learned by a
translation model, given a source sentence a corresponding translation can be generated by searching
for the sentence that maximizes the conditional probability.

Recently, a number of papers have proposed the use of neural networks to directly learn this condi-  —.

tional distribution (se¢, e.g., Kalchbrenner and Blunsom, 2013; Cho ef al, 20142, Sutskever et al,, > ” = 27F R
2014; Cho et al., 2014b; Forcada and Neco, 1997). This neural machine translation approach typ-
ically consists of two components, the first of whichienc odes,a source sentence x and the second

. decodes to a target sentence y. For instance, two recurrent neural networks (RNN) were used by

(Cho et al., 2014a) and (Sutskever ef al., 2014) to encode a variable-length source sentence into a

fixed-length vector and to decode the vector into a variable-length target sentence. FixéD

Despite being a quite new approach, neural machine translation has already shown promising results.
Sutskever et al. (2014) reported that the neural machine translation based on RNNs with long short-
term memory (LSTM) units achieves close to the state-of-the-art performance of the conventional
phrase-based machine translation system on an English-to-French translation task.! Adding neural
Ol ients to existing translation systems, for instance, to score the phrase pairs in the phrase

table (Cho ef al., 2014a) or to re-rank candidate translations (Sutskever ef al., 2014), has allowed to
surpass the previous state-of-the-art performance level.

2.1 RNN ENCODER-DECODER

Here, we describe briefly the underlying framework, called RNN Encoder-Decoder, proposed by
Cho et al. (2014a) and Sutskever et al. (2014) upon which we build a novel architecture that learns
0 TR i £ l 1 .ﬂ

In the Encoder-Decoder framework, an encoder reads the input sentence, a sequence of vectors
x = (z1,+++ ,&r, ), into a vector ¢.2 The most common approach is to use an RNN such that

| he=f (zhht—l)‘l "*woeums—lr; & -
— Previous't

P L S L Sy
where h; € R™ is a hidden state at time £, and c is a vector generated from the sequence of the
hidden states. f and q are some nonlinear functions. Sutskever ef al. (2014) used an LSTM as f and
g({h1,+ ,hr}) = hp, for instance.

! We mean by the state-of-the-art performance, the performance of the conventional phrase-based system
without using any neural network-based component.

2 Although most of the previous works (see, ¢.g., Cho et al., 2014a; Sutskever et al., 2014; Kalchbrenner and
Blunsom, 2013) used to encode a variable-length input sentence into a fixed-length vector, it is not necessary,
and even it may h&bwcﬁualtolun a variable-length vector, as we will show later.




PublishedasaconfempaperuthLleS

?r:im is_oﬁen trained to predict the next word Y gi
\ y words {y},u- yYr~1}. In other words,
@# by decomposin j

g the joint probability into the

all the

| e context vector _'
T CondITIoNAL

= INT

p(y) - Hp(“ l {yls o 4&—1} .C), TP;oE)&”-ITT (‘2)

t=1

wbem)':(yh”'!W,)-Wilhﬂnm,eachconditiona] ! bility i teled a3

(P(Hl | {1, YW1} '-‘-'I = 9(yt-1,81,0), HMobEL @ 53#5‘?05”
where g is anonlinear, potentially multi-layered, function that outputs the probability of g, and s is
thehlddgnsmmoftheRNN.Itshmﬂdbenwdthumheruchimsudus ybrid of an ayseToR

and aide-gonvolutional neural network can be used (Kalchbrenner and Blunsom, 2013)..s (= guconinie-
“TRAIPesED LN e

3 LEARNING TO ALIGN AND TRANSLATE 8 SRet/Siy mid

In this section, we propose a novel architecture for neural machine translation. The new architecture
consists of a|bidirectional RNN as an encoder (Sec. 3.2) and a decoder that emulates searching

through a sentence during decoding a translation (Sec. 3.1).

3.1 DECODER: GENERAL DESCRIPTION
SRR

G?PF?;{
vy

In a new model architecture, we define each conditional probability

NDI oy L— i . ean g Yi-1y = i—1y 84, 3 4
Co g;\cmw 1p(y.ly1. \Yi-1,%) = 9(¥i—1, 86, &)\ @
where s; is an RNN hidden state for time i, computed

T
C(_" MTEY\T 8= f(si—liyl'—lact)- ‘ST*\TE

VD 1t should be noted that unlike the existing encoder-decoder ap-
CIOR proach (see Eq. (2)), here the probability s conditioned on a distinct
context vector ¢; for each target word ;.

The context vector ¢; depends on a sequence of \annotations .
. h,---,hq-_)towhichanmoodcrmapsﬂninpmsentmce.ﬁach
ANNSTANONS gmlmtation h; contains information about the whole input sequence
2 with a strong focus on the parts surrounding the i-th word of the
input sequence. We explain in detail how the annotations are com-
puted in the next section.
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Figure 1: The graphical illus-
tration of the proposed model

s A trying to generate the ¢-th tar-

The context vector ¢; is, then, computed as a weighted sum of these
annotations h;:

get word y; given a source
(5) sentence (z1,72,..-,ZT)-

as :
VECTOR .
The weight o;; of each annotation h; is computed

b =
L'__""'A_j\g\.n-if‘fj\" 1IoN
exp (ei;) (

e Ype exp(ea)’

[ \ MLYVGNMENT

eij = a(si-1, h;) Mol

scores how well the inputs around position j and the output at position k
sed on the RNN hidden state 5;1 (just before emitting v, Ea. (4)) and the

We parametize the alignment model a as a feedforward neural network which is jointly trained with FTTRNTON
all the other components of the proposed system. Note that unlike in traditional machine translation, HEAD S

Jeo RE (6)

kel
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A g a weighted sum of all the annotations\as computing an -
‘{E@mdmmng. where the expectation is over possible alignments. Let a; be a ity that gwE&lEE’)M
¢ target word y; is aligned to, or translated from, a source word z;. Then, the i-th context vector N\»ﬁm‘
¢; is the expected annotation over all the annotations with probabilities a;.

The probability a;;, o its associated energy €4, reflects the importance of the ‘annotation h; with
lmgpgctto the ptwfona hidden state s;_, in deciding the next state s, and generating y;. Intuitively,

this implements a mechanism of attention in the decoder. The decoder decides parts of the source

sentence to pay attention to. By letting the decoder have an attention mechanism, we Telicve the: W
+encoder-from.the:burden of Kaving to 26206-all-inforiuston in the source sentence into  fixed- JF 15 NTIOH
length vector. With this new approach the information can be spread throughout the sequence of

annotations, which can be selectively retrieved by the decoder accordingly.

3.2 ENCODER: BIDIRECTIONAL RNN FOR ANNOTATING SEQUENCES

The usual RNN, described in Eq. (1), readsaninputsequenoexinaﬂersmﬁngfmmthcﬁ_rst

’1‘\_0%‘* symbol z; to the last one z7,. However, in the proposed scheme, we would like the annotation

RO of each word to s arize not.only the preceding words, but also the following words. Hence,

pg we propose to use a\bidirect: 'nmﬁm Schuster and Paliwal, 1997), which has been
R successfully used recently in speech recognition (see, ¢.g., Graves et al., 2013).

A BiRNN consists of forward and backward RNN's. Theforward RNN 7 reads the input sequence
as itis ordered (from 2, to 7, ) and Ealeulates & sequence of forward hidden states (1, » I 7.)
The backward RNN ?rcadsﬁie uence in the reverse order (from zr, to ), resulting in a
Sequence of backwand hidden stdfes (1, » B.):

directional

—
Q@-ﬁ%@ We obtain an annotation for each word z; by ecpmmmgmcfmwndhddm'm h ; and the
p "’\“{{};ﬁ% backward one'ﬁ,-, ie. In this way, the annotation h; contains the summaries
N ) of both the preceding words e following words. Due to the tendency of RNNs to better
. (\to represent recent inputs, the annotation h; will be 'focused on the words around ;. This sequence
of annotations is used by the decoder and the alignment model later to compute the context vector
(Egs. (5)6))-

See Fig. 1 for the graphical illustration of the proposed model.

4 EXPERIMENT SETTINGS

We evaluate the proposed approach on the task of English-to-French translation. We use the bilin-
gual, parallel corpora provided by ACL WMT '14.3 As a comparison, we also report the perfor-
mance of an RNN Encoder-Decoder which was proposed recently by Cho ef al. (2014a). We use
the same training procedures and the same dataset for both models.*

4.1 DATASET

WMT 14 contains the following English-French parallel corpora: Europarl (61M words), news

commentary (5.5M), UN (421M) and two crawled corpora of 90M and 272.5M words respectively,

gppnVE _  totli £ 850M words. Following the procedure described in Cho ef al. (2014a), we reduce the size of
()25~ the combined corpus to havé 348M words using the data selection method by Axelrod et al. (2011).°
?FLE"W«N We do not use any monolingual data other than the mentioned parallel corpora, although it may be

possible to use a much larger monolingual corpus to pretrain an encoder. We concatenate news-test-

*http://www.statmt.org/wmt1l4/translation-task.html
4 Implementations are available at https: //github.com/1lisa-groundhog/GroundHog.
5 Available online at http: //www—lium.univ-lemans. fr/~schwenk/cslm_joint_paper/.
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4.2 MODELS

We train two types of models. The first one is an RNN Encod 7 ‘” er (RNNencdec, Cho et al.,
2014a), and the other is the proposed model, to which we refer as RNNs 1. We train each model
twice: first with the sentences of length up to 30 words' (RNNencdec-30, RNNsearch-30) and then

with the sentences of length up'to 50 word|(RNNencdec-50, RNNsearch-50).

The encoder and decoder of the RNNencdec have 1000 hidden units each.” The encoder of the
RNNsearch consists of forward and backward recurrent neural networks (RNN) each having 1000
hidden units. Tts decoder has 1000 hidden units. In both cases, we use a multilayer network with a
singlemntﬁizzdfeﬂaw et al., 2013) hidden layer to compute the conditional probability of each

Fo SETANE target word u et al., 2014). F\D*«U@"'k
AR BRI We use a minibatéh stochastic gradient déscert (SGD) algorithm together with Adadelta) (Zeiler, , .o !

2012) to train each model. Each SGD update direction is computed using a minibatch of 80 sen-
{tences. We trained each model for approximately 5 days.

Once a model is trained, we use a beam search to find a translation that approximately maximizes the
Ber™ conditional probability (see, e.g., Graves, 2012; Boulanger-Lewandowski et al., 2013). Sutskever
U= Saud et al. (2014) used this approach to generate translations from their neural machine translation model.

For more details on the architectures of the models and training procedure used in the experiments,
see Appendices A and B.

5 RESULTS

5.1 QUANTITATIVE RESULTS

In Table 1, we list the translation performances measured in BLEU score. It is clear from the table , {5¢ e
that in all the cases, the proposed RNNsearch outperforms the conventional RNNencdec. More ' ﬂ,e?“ 2
importantly, the performance of the RNNsearch is as high as that of the conventional phrase-based Q‘Hgﬁ'-,
translation system (Moses), when only the sentences consisting of known words are considered. * ™
This is a significant achievement, considering that Moses uses a separate monolingual corpus (418M

words) in addition to the parallel corpora we used to train the RNNsearch and RNNencdec.

6 We used the tokenization script from the open-source machine translation package, Moses.
7 In this paper, by 4 *hidden unit’, we always mean the gated hidden unit (see Appendix A.1.1).
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Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight a;; of the annotation of the 4-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b—d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

~auteXT  \(ECIOR
One of the motivations behind the proposed approach was the use of a fixed-length context VECtor | s () FF VLT
in the basic encoder—decoder approach. We conjectured that this limitation may make the basic LN TERM
\encoder—decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder—decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

wiTH

NEPENDENCIES



Table 15 BLEU scores of the trained models com-
M%“’"LMM puted on the test set. The second and third columns
RNNencdec-30 13937 24,19 ~  show respectively the scores on all the sentences and,
—RNNsearch-30 | 21.50 31.44 on the sentences without any unknown word in them-
: % selves and in the reference translations. Note that
RNNsearch-50 | 2675 | 3416 RNNsearch-50* was trained much longer until the
“RNNsearch 50" 7845 361§ performanceonthe development et sopped impro-
Moses 3330 | 3563 0. (o) We disallowed the models t4 generate [UNK]
tokens when only the sentences having.no
‘words were evaluated (last column).

5.2 QUALITATIVE ANALYSIS
5.2.1 ALIGNMENT

lAJ =
T‘W PTTHE Qs Thepmmwmchpmwwanmnnuvewaymmspeamc(mﬁ)ah
T AGmET? masmemwdmﬂanonmdthosemasomms:mmoe.ﬂnsmdoncb
' @mEQ(G).asmFQS Bnchruwofamamxmmhplntmdmwsthcwelghm
associated with the annotations. From this we see which positions in the source sentence were

considered more important when generating the target word.
rench AMONTBNIC

We can sec from the alignments in Fig. 3 that the alignment of words between English and Frenc

is largely monotonic. We see strongléughts along the diagonal of each matrix. However, we also LooRD A Liea@NT
observe a number i ) ; alignments., Adjectives and nouns are typically
ordﬁ'eddjﬂ'emnﬂybetweenl’renchmdﬁngllsh, and we see an example in Fig. 3 (a). From this

figure, we see that the model correctly translates a phrase [European Economic Area] into [zone

économique européen]. The RNNsearch was able to correctly align [zone] with [Area], ]mnpmg

over the two words ([European] and [Economic]), and then looked one word back at a time to

complete the whole phrase [zone économique européenne].

mr‘.-N 'I‘hesuengthofthesoﬁallgnnmt,opposedtoaha:dahgmneu:smdmt.formstancefmm
‘MJMEN Fig. 3 (d). Consider the source phrase [the man] which was translated into [1I” homme]. Any hard

gnment will the] to [1'] and [man] to [homme]. This is not helpful for translation, as one
FPARD - AL‘ & ”‘5‘”8]] g i }nllol:vilg [ufe] to determine whether it should be translated into [le], [1a],
[les] or [I'). Ourfsoft-alignment solves this issue naturally by letting the model look at both [the] and
[man], and in this cxample, we see that the model was able to correctly translate [the] into [1']. We
observe similar behaviors in all the presented cases in Fig. 3. An additional benefit of the soft align-
ment is that it naturally 3 _‘muﬂtﬁmphumofdlﬂumlmgﬂm, without requiring a
counter-intuitive way of mappmg some words to or from nowhere ([NULLY]) (see, e. g., Chapters 4

and 5 of Koehn, 2010).

lbetwecnlhewordS_

5.2.2 LONG SENTENCES

As clearly visible from Fig. 2 the proposed model (RNNsearch) is much better than the conventional
model (RNNencdec) at translating long sentences. This is likely due to the fact that the RNNsearch
does not require encoding a long sentence into a fixed-length vector perfectly, but only accurately
encoding the parts of the input sentence that surround a particular word.

As an example, consider this source sentence from the test set:
An admitting privilege is the right of a doctor to admit a patient to a hospital or

a medical centre to carry out a diagnosis or a procedure, based on his status as a
health care worker at a hospital.

The RNNencdec-50 translated this sentence into:

Un privilege d’admission est le droit d’un médecin de reconnaftre un patient &
Uhépital ou un centre médical d'un diagnostic ou de prendre un diagnostic en
Jfonction de son état de santé.




orrectl:
there on (underlined), it doyiateg oo L1® $0UTCe sentence until[a medical center]. However, from

replaced [based on his the original meaning of the source sentence. For instance, it
: status eal ey : s
fonmondcmétndemw]”ah ou;ﬁ:cwor:;rat:hl?gspnﬂ]mthemoesenwncemm[en

On the other hand, the RNN:
‘whole - p scarch-50 generated the following correct translation ing the
w0l meaning of the input sente A d the fo. owmgs: , preserving the

Un wﬂége d’admission est le droit d'un médecin d’admettre un patient & un
Ou un centre médical pour effectuer un diagnostic ou une procédure, selon

Son statut de travailleur des soins de santé & I'hbpiral.
Let us consider another sentence from the test set:

This kind of experience is part of Disney's efforts to "extend the lifetime of its
series and build new relationships with audiences via digital platforms that are
becoming ever more important,” he added.

The translation by the RNNencdec-50 is

Ce type d’expérience fait partie des initiatives du Disney pour "prolonger la durée
de vie de ses nouvelles et de développer des liens avec les lecteurs numériques qui
deviennent plus complexes.

As with the previous example, the RNNencdec began ‘deviating from the actual meaning of the
source sentence after generating approximately 30 words (see the underlined phrase). After that
point, the quality of the translation deteriorates, with basic mistakes such as the lack of a closing
quotation mark.

Again, the RNNsearch-50 was able to translate this long sentence correctly:

Ce genre d’expérience fait partie des efforts de Disney pour "prolonger la durée
de vie de ses séries et créer de nouvelles relations avec des publics via des
plateformes numériques de plus en plus imporiantes”, a-1-il ajouté.

In conjunction with the quantitative results presented already, these qualitative observations con-
firm our hypotheses that the RNNsearch architecture enables far more reliable translation of long
sentences than the standard RNNencdec model.

In Appendix C, we provide a few more sample translations of long source sentences generated by
the RNNencdec-50, RNNsearch-50 and Google Translate along with the reference translations.

6 RELATED WORK

6.1 LEARNING TO ALIGN

_] DM 0
‘)_‘,::h.gf,q;s A similar approach of aligning an output symbol wi_th an input symbol was proposed recently by A (5= NT
- Graves (2013) in the context of handwriting synthesis. Handwriting synthesis is a task where the .
model is asked to generate handwriting of a given sequence of characters. In his work, he used a Manl L
A mixture of Gaunssian kernéls to compute the weights of the annotations, where the Jocation, width L LooaT1090
(oSt < and mixture coefficient of each kernel was predicted from arialignment model. More specifically, —yuiinT#
KE® his alignment was restricted to predict the location such that the location increases monotonically.  \_pr(yx va/=
The main difference from our approach is that, in (Graves, 2013), the modes of the weights of the <~ /*"”"
RV \DI?E'.CﬂdJ‘\‘— annotations only move if ‘one direction. In the context of machine translation, this is a severe limi-
TToNs | tation, as (long-distance) 1 ing is often needed to generate a grammatically correct translation

AN

(for instance, English-to- ).

Our approach, on the other hand, requires computing the|annotation weight of every word in the |12 w AN
source sentence for each word in the translation. This drawback is not severe with the task of (u % AEDEE

translation in which most of input and output sentences are only 15-40 words. However, this may 11415 1A/ TATION

limit the applicability of the proposed scheme to other tasks.

-



Published as a conference paper at ICLR 2015

6.2
NEURAL NETWORKS FOR MACHINE TRANSLATION

Since Bengio et al. (2003) introduced &ieural ilisti .
2 : probabilistic e model which uses a neural net-
work 1© model the conditional probability of a word given e imer o the preceding words,
b networks have widely been used in machine translation. However, the role of neural net-
works has been largely limited to simply providing dingle feature to an existing statistical machine
translation system o to re-rank a list of candidate translations provided by an existing system.

For instance, Schwenk (2012) proposed using a feedforward neural network to compute the score of
apa_lr.ofsoumeand target phrases and to use the score as an additional feature in the phrase-based
statistical machine translation system. More recently, Kalchbrenner and Blunsom (2013) and Devlin
et al. (2014) reported the successful use of the neural networks as 4 sub-component of the existing
translation system. Traditionally, a neural network trained as a target-side language model has been
used to rescore or rerank a list of candidate translations (see, e.g., Schwenk et al., 2006).

Although the above approaches were shown to improve the translation performance over _the_statc-
of-the-art machine translation systems, we are more interested in a more ambitious ob_]_ectwe of
designing a completely new translation system based on neural networks. The neural machine trans-
lation approach we consider in this paper is therefore a radical departure from these earlier works.
Ralhuthnusingamﬂnﬁwmkapmdtbeuﬁsﬁngsymm,ommoddworksmnsownmd
generates a translation from a source sentence directly.

7 CONCLUSION

— CIXeD-LENGTH
The conventional approach to neural machine translation, called an encoder—decoder approach, en-| __, . re vt e TORS
codes a whole input sentence into a fixed-length vector from which a translation will be decoded. - (rpurLE WIITH'
We conjectured that the use of a fixed-length context vector is problematic for translating long sen- | | & -TEr~
tences, based on a recent empirical study reported by Cho et al. (2014b) and Pouget-Abadie et al. | pepeiloEiaI =S
(2014).

In this paper, we proposed a novel architecture that addresses this issue. We extended the basic
encoder—decoder by letting a model(soft-)search for a set of input words, or their annotations com-
puted by an encoder, when generating each target word. This frees the model from having to encode
a whole source sentence into a fixed-length vector, and also lets the model focus only on information
relevant to the generation of the next target word. This has a major positive impact on the ability {
of the neural machine translation system to yield good results on longer sentences. Unlike with

SoeT
NITEwWT o8

PLLEVIATES

m
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the traditional machine translation systems, all of the pieces of the translation system, including | '\\: 1~; I.,.J-‘:'_ ~ ol
the alignment mechanism, are jointly trained towards a better log-probability of producing correct /=~~~
translations.

We tested the proposed model, called RNNsearch, on the task of English-to-French translation. The ) . .
experiment revealed that the proposed RNNsearch outperforms the conventional encoder-decoder \ ' "'~ "'=10%
model (RNNencdec) significantly, regardless of the sentence length and that it is much more ro- " 5=7TER
bust to the length of a source sentence. From the qualitative analysis where we investigated the T RANSLATION
(soft-)alignment generated by the RNNsearch, we were able to conclude that the model can cor- | /~0& L

rectly align each target word with the relevant words, or their annotations, in the source sentence as_,

it generated d correct translation.

Perhaps more importantly, the proposed approach achieved a translation performance comparable to

the existing’phrase-based statistical machine translation. It is a striking result, considering that the

proposed architecture, or the whole family of neural machine translation, has only been proposed

as recently as this year. We believe the architecture proposed here is a promising step toward better

machine translation and a better understanding of natural languages in general.

One of challenges left for the future is tq better handle unknown, or rare words. This will be required 0.0 DO
for the model to be more widely used and to match the performance of current state-of-the-art ;= 1ipp, =
machine translation systems in all contexts. S -
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A MODEL ARCHITECTURE

A.1 ARCHITECTURAL CHOICES

The proposed schemeinSecﬁon3isagenemlframorkwhereonecmﬁulydeﬁne,fminsm

the activation functions f of recurrent )
1 2. uetwwks Ilefe. we
describe the choices we made for the exmm'], e M(RNN) anﬂ the alignment model a.

A.1.1 RECURRENT NEURAL NETWORK

For the activation function f of an RNN, we use the gated hidden unit recently proposed by Cho 5771 PUSEDETS
et al. (2014a). The gated hidden unit is an alternative to the conventional simple units such as an VARISHNG
element-wise tanh. This gated unit is similar to a long short-term memory (LSTM) unit proposed  GRADISITS
earlier by Hochreiter and Schmidhuber (1997), sharing with it the ability to better model and learn

long-term dependencies. This is made possible by having computation paths in the unfolded RNN

for which the product of derivatives is close to 1. These paths allow gradients to flow backward

easily without suffering too much from the vanishing effect (Hochreiter, 1991; Bengio ef al., 199

Pascanu et al., 2013a). It is therefore possible to use LSTM units instead of the gated hidden unit

described here, as was done in a similar context by Sutskever ef al. (2014).

The new state s; of thrIR_Ny :Epl_oﬂng n gated hidden lmil.@s cmnplllﬂl_i_b_}' o GaTED WEIT

| 8= f(si-n,pi-n,6) = (1—z) o8+ %0 B, |sTRTE UFPRTE
| e T -
where o is an element-wise multiplication, and z; is the output of the update gates (see below). e
updated state §; is computed b -
proposed upda i mputed by CASDIDATE. UPCATEP

) 5, = tanh (We(gi_1) + U [ri 0811 + C&) \ copr=

- — ;
where e(y;—1) € R™ is an m-dimensional embedding of a word ¥i—1, 81':1(1 ri is the output of the
reset gates (see below). When y; is represented as a 1-of-K vector, e(y;) is simply a‘polm-:m of an

, ing matrix E € R™*X, Whenever possible, we omit bias terms to make the equations less
cluttered.

“con W vhe from the previous state should be reset. We compute them

R x i FoATE 3‘;\
% = o (Wae(pi-1) + Ussi-1 + Czci) éfr.:..sc—lr FATES

ri =0 (Wye(Wi-1) + Ursic1 +Ce6i) s | 10 A sATED
BN | Hj.{‘:\—_\EN [PI NN o

At eacH{jsitep of the decoder, we Gompute the output probability (Eq. (4)) as a multi-layered func-
ion (P et al., 2014). We use a single hidden layer of maxout units (Goodfellow et al., 2013)
ize the output probabilities (one for each word) with a softmax function (see Eq. (6)).

A.1.2 ALIGNMENT MODEL

The alignment model should be designed considering that the model needs to be evaluated T, x T},

times for each sentence pair of lengths T;; and T),. In order to reduce computation, we use a single-
| a(ai-1,hy) = v, tach (Wasi1 + Uahy) § manct-

where W, € R™*", U, € R™*2% and y, € R™ are the weight matrices. Since Uph; does not

depend on ¢, we cafl pre-compute it in advance to minimize the computational cost.

f;')Hun.weshowﬂlefonnuhofthedacodu.Mameﬁomﬂa be i encoder by simpl
ignoring the context vector ¢; and the related terms. S e g

1
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A.2 DETAILED DESCRIPTION OF THE MiibEr
A.2.1 ENCODER -

NO NEED Rr Rixed CONTERT VECTDR
, we describe in detai

: the architecture of the model search) used in the
experiments (see Sec. 4-5). mehmm.nwﬂmhwmmh
The model takes a’source sentence of J-0f-K coded word vectors as i

e A R W RO
. f x = (2y,...,2r,), z; € R¥= VECTORS

- oUTPUT bIRD
Y=, um), s €ER¥ | ectors

of source and target languages, respectively. T,and Ty

Bi RNN

where K; and K, are -abular
respectively denote the lengths of sou

- n WExi+ T [PioRina]) |UPNTE GITR. L
B =tanh (WEz: + T [Pio Bis RESET GRTR FOR
?l =0 (Wxﬁwi + ﬂ,?i_l) :

?{ =0 (Wrﬁzi‘i'ﬂr?i—-l .

RﬂXﬂ m

- . . v W € RXx™, ﬂ’ﬂx‘ﬂr E a

T € R™Ke is the Jord embedding matrix. W, W, Wr € A

weight matrices. mandnareﬁlc_wc_rd.cmhiddmsd'mnnmomlnyandthenmnber

respectively. o(-) is as usual a logistic sigmoid function. .

The backward states (7 1, -+ , o, ) are computed similarly. We share the word embedding

T between the forward and backward RNNs, unlike the weight matrices. _ i
oncatenate the forward Gl s to to obtain the annotations (h1, b2, <+, M)

we ~ancatenate the 3" S

CONCATENATION oF

FORWARD ] Bhoku kRS> @)

STRTES

A.2.2 DECODER : -
The hidden state s; of the mm-mmmmm compu

—IDECcepER VFDATE
si=(1—z)osi1 o8 =

wl;m

e cAuniOATE SINE
. 5; =tanh (WE!B—! + U ['.l"" (=] 35_1] + Cc') i ONTE (}ﬂTE( ,-8
2 =0 (WeEyi—1 + Uz8i-1+ C:63) RESET GATE FOR
r; =0 (WrByi1 +Upsiaa +Cre)  ADEcoDER )
nXm U U U e R!‘I ﬂ‘
is the word embedding matrix for the target language. W, W, W € R, U, Uy, Ur € &
e aEml:’nsz';heC C ennxauﬁu:eight& tﬁ;iin.mtmdnarethns\m:»rdeml:»addu::gclumnsw;m};ty___
’ sy r

; e A : b s
AL =78 Eﬂmdtheﬁofﬁiddmunﬁs,mpecﬂvﬂy. The initial hidden state so is computed yro -
k IN l:ﬁp "[_:-'ATED F nh Wa 1 ;Whﬂe W’ € R“Xn. o — v

He The context vector c; are recomputed at the alignment model:

pEFNITION oF
e —~ lﬂJ T
\» & =Za‘jhj' DEcobep COMSTER

j=1 N EOR
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__Model | Updates (x10®) Epochs _Hours GPU Train NLL _Dev. NLL
"gnﬁaagg 8.46 64 100 TIIANBLACK _ 28. 530
enc- 6.00 45 108 QuadroK-6000 440 436
“RNNsearch-30 471 3.6 113  TITAN BLACK 26.7 .
RNNsearch-50 288 22 11l QudoKe00 407
RNNsearch-50* 6.67 5.0 252  Quadro K-6000 36.7

'Ihble 2: Learning statistics and relevant information. Each update corresponds to updating the

- usmgasmg]e minibatch. One epoch is one pass through the training set. NLL is
or the development

" ditional log-probabilities of the sentences in either the training set
set. Note that the lengths of the sentences differ.

where Nhi'f"'l\ﬂmr-) mm@.LITY

N exp (ei) Wp AsOCINED

B o, o fa N
7= exp (eix) SO

eij =v, tanh (Wasi-1 + Ush;) »
and h; 1sthe3-thamutatlonmthesom'ceszntence(seeﬂq (M. va € R, Wa € Rﬂxné:d
U, € RY*?" are weight mmc&s. Note that the model becomes RNN Enwdﬂ"'w"d“ (e
et al., 2014a), if we fix ¢; to h-_r. . -‘.;‘

we define ;

Wil.hthedecodetslatea, 1 theoontextqandtbelastganemodwordm —1 W

{of a target word ¥; - ProBABIL 1Y eF A
p(wilse, i1, ) P (U] Woti) o}, TasmTES L2285

where o meN °F
4,

= [max {E125-1, 61,25 Hizt..

and ;  is the k- :helmeu:ofawaort.whschlsoompm by permer 0F
i, =U,si-1 + VoBYi-1 + CoC- | - MAKeUT HIPDER

W, € REvXL, U, € R®**, 7, eR""'"andC.,eR”*’“arc'
stood as having (Pascanuera!.,zmd») with d'Sing
et al., 2013).

HIDDEN CLAYER. | 020

A.2.3 MODEL SIZE
in this the size of layer m is 100 EMBEDOMG- e
cagkina and the sire of the hidden layer in the de ompmﬁg Puasnx e aery - 6=
the alignment mode 100C MAXOUT LhlER (S 0o
Hibeew onlirs 2100 @

B TRAINING PROCEDURE

T

RNNs lm‘rmuzﬂ" o
To RADOW oRE gl = mal:m:esU U:I;U,.,F U,,ﬁ,ﬁhﬂ m;]f/’ ,w"*‘.d-l': Ga0sTANY
\CE we initialized them by sam ling element Gaussian
P'\P‘:Ef" e . and all thelbias v s werdimis -‘:i(:- =

7 ix was initialized from the G n distribation - :
U'ub-o ! 1 vh e bysun‘?lmgrwym?m) S—.0n MEAIE ¢

o‘_ﬂﬁh [,.lE!GH‘r = (;.N)SS{"\ Ib -.:'-::H VA RAPNICE IGL’ VAF“'\U;E 13
B2 TrAmNG MATRESS
S(J-D m@:m Adadelta (Zeiler, 2012) was used to
ADADE LHS

each parameter (¢ = 107 and p = 0.95). We explicitly
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At each update our implementation requires ti
minibatch. Hence, to minimize requires time proportional to the length :
:m sentence Pl;c;“:)rmd lhﬂn‘he Wa.?ie of wmpumﬁoﬁ,hl?u'icm gg‘c longest sentence in
mmﬂ'kﬂﬂhﬂmmﬁ:mmg@”wﬁ: 8

r_.
'_*' - training data was shuffled once before training and
» > 5 . was traversed sequentially in this manner.
wi we present the statistics related to training all th i
¢ g e models used in the experiments.
] C TRANSLATION t
S OF LONG SENTENCES — | (JISH ( STOFE FREYCH
Source el o oy, T
::“ mﬁswum“moﬁmmunﬁupaﬁmmawm«am
e fo oy ol m‘aptmedme,bawdmlﬁssmnahmllhwcwahrlﬂm ital.
d. privikged'a est Ic droit d’un médecin, en vertu de son statut soignant
dim hﬁgﬂﬂ.daﬂmcttrempaﬁmtdmunhﬂ;italoummﬂemédicalaﬁnd'y délivrer un
agnostic ou un traitement.
RNNenc-50 | Un priviloge &'admission est le droit d"un médecin de un pasiont 31 hOpa’ 0y

ostic

m“!md'm Q13 1""1"' prendre un diagn
RNNsearch-50 | Un privilége'd o est I droit d'un médecin T admetire un patient

mmm&ﬁ“lpmﬂmmdilgnmﬁcmmpnﬁMmlmsmsmtdcw

ailleur des

soins de santé 3 'hipital. M
Google Un privilegeadmeftre est Ie droit d un médecin G patient dans un tal ou un
Translate ceﬂﬂcm&ﬁcdpuuretfncmaundiapmakmm fuﬂeesmsammaﬂnnmtam

que travailleur de soins de santé ‘dans un hopital.

s it of Disney s effort 1o "extend the LICHmS mwm;:ﬂd"‘“tl.ﬂ

Source This kind of experience i
new relationships with audiences via digital platforms that are becoming EVer

Reference

tes”, a-t-il ajouté.
du Disney pour Cproio

PR R——
RNNenc-50 Ce initiatives o/
es lecteurs numériques

RNNsearch-

Translate i ;
deviennent de plus en lus im] L at-il a
B msnoﬂ:ingmﬂ:isndwthaum;ht

Tair stated that ; '
could lead to criminal charges being brought against the
En dcpﬁse.jwdi,MBlura quiln‘yavm:imdam::.ettev"i a qui puisse
constituet des "motifs raisonnables™ pouvant mener au dépdt d'une accusation criminelle contre
RNNenc-50 conf dejcudi.M.Blairaditqu'ﬂn'yavaitﬁmdmscdtewdéoqnﬁ

pmnrallmustmr'uln"muvaum raisomablc"pouwmenminﬂdeamsaﬁonsghﬁneﬂes
avait rien dans cette vidéo qui
2 des accusations criminelles

3. M. Blair a déclaré qu'il n'y

RNNsearc
it constituer un “motif raisonnable” qui pourrait conduire
: contre le maire.
% "Google Tors d’unc conférence de jeudi, M. Blair 3Zclaré qu'il m'y avait rien dans cette vido
Translate qui pourrait constituerun "motif raisonnable” qui pourrait mener 2 des accusations criminelles
portes contre le maire.

Table 3: The translations generated by RNNenc-50 and RNNsearch-50 from long source sentences
(30 words or more) selected from the test set. For each source sentence, we also show the gold-

standard translation. The translations by Google Translate were made on 27 August 2014.
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