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A New Approach to Linear Filtering
and Prediction Problems'

R. E. KALMAN

Research Institute for Advanced Study,?
Baltimore, Md.

The classical filtering and prediction problem is re-examined using theé Bode-
Shannon representation of random processes and the “state transition” method of

analysis of dvnamic systems, New results are:
(1) The formulation and methods of solution of the problem apply without modifica-

Lmemory filters.,

tion 10 stationary) and 'nonstationary statistics_and (o, growing-memory and" infinite-

(2) A nonlinear difference (or differential) équation.is derived for the covariance
matrix -of the optimal estination error.

From the solution of this equation the co-

efficiems of the difference (or differential) equation of the optimal linear filter are ob-

tained without further calculations. .
(3) The filtering problem is shown to be the dual of the noise-free regulator problen:.
The new method developed here is applied to two well-known problems, confirming
and extending earlier results.

The discussion is largely self-comtained and proceeds from first principles: basic
concepts of the theory of random processes are reviewed in the Appendix.

Introduction

AN IMPORTANT class of theoretical and practical
problems in communication and control is of a statistical nature.
Such problems are: (i) Prediction ol random signals; (ii) separa-
tion of random signals from random noisc: (iii) detection of
signals of known form (pulses, sinusoids) in the presence of
random noise.

In his pioneering work, Wiener [1]' showed that problems (i)
and (ii) lead to the so-called Wiener-Hopf integral equation; he
also gave a method (spectral factorization) for the solution of this
integral equation in the practically important special case of
stationary statistics and rational spectra.

Many extensions and generalizations followed Wiener's basic
work. Zadeh and Ragazzini solved the finite-memory case [2].
Concurrently and independently of Bode and Shannen |3], they
also gave a simplified method [2] of solution. Booton discussed
the nonstationary Wiener-Hopf equation [4]. These results are
now in standard texts [5-6]. A somewhat different approach along
these main lines has been given recently by Darlington |7]. For
extensions to sampled signals, sec. e.g.. Franklin [8], Lees [9].
Another approach based on the eigenfunctions of the Wiener-
Hopl equation (which applies also to nonslationary problems
whereas the preceding methods in general don’t), has been
pioneered by Davis [10] and applied by many others, eg.,
Shinbrot [11], Blum | 12]. Pugachev [13]. Solodovnikov | 14].

In all these works, the objective is Lo obtain the specification of
a linear dynamic system(Wiener filter) which accomplishes the
prediction, separation, or detection of a random signal.*

| This research was supported in part by the U. 5. Air Force Office of
Scientific Research under Contract AF 49 (638)-382.
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3 Numbers in brackets designate Referenees at end of paper.

4 Of course, in general these tasks may be done better by nonlinear
filters. At present. however, little or nothing is known about how to oblain
{both theoretically and practically) these nonlinear filters.
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Present methods for solving thé Wiener problem are subject to
a number of limitations which seriously curtail their practical
usclulness:

(1) The optimal filter is specified by its'impulse response. It is
not a simple task 1o synthesize the filter from such data.

(2) Numerical determination of the optimal impulse response.is
often quite involved and poorly suited to machine computation.
The situation gets rapidly worse with increasing complexity of
the problem.

(3) Important generalizations (e.g., growing-memory [ilters.
nonstationary prediction) requircinew derivations, frequently of
considerable difficulty to the nonspecialist.

(4 Thc‘rPa_v_thm_a}g of the derivations are ‘not’ transparent.
Fundamental_ assumptions ‘and their consequences lend to be
obscured.

This paper introduces a new look at this whole assemblage of
problems, sidestepping the difficulties just mentioned. The
following are the highlights of the paper:

(5) Optimal Esumates and Orthogonal Projections. The
Wiener problem is approached from the point of view of condi-
tional disfriblitions and expectations. In this way. basic facts of
the Wiener theory are quickly obtained; the scope of the results
and the fundamental assumptions appear clearly. It is se 1
statistical calculations and results are based on

yeragess no other statistical data are needed. Thus
difficulty (4) is eliminated. This method is well known in
probability theory (see pp. 75-78 and 148-155 of Doob [15] and
pp- 455464 of Loéve |16]) but has not yel been used extensively
in engineering.

(6) Models for Random Processes. Following, in particular,
Bode and Shannon |3], arbitrary random signals are represented
(up to second order average statistical properties) as the output of
a lincar dynamic system excited by independent or uncorrelated
random signals (“white noise”). This is a standard trick in the
engincering applications of the{ Wiener “theory|2-7|. The
approach taken here dilfers from the conventional one only in the
way in which linear dynamic systems are described. We shall
emphasize the concepts of srate and stare rransition; in other
words, linear systems will be specified by systems of first-order
difference (or dilferential) equations. This point of view is
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natural and also necessary in ";dt‘r lo lake advantage of the
sim_:; h??“ﬂf ?_; l:tl:[:‘ﬁ/femfLlr’j';,:j).!ﬂn. With the state-transition
/) o ivation covers a large variety of problems:
single 't vers a large variety of p
mcl h.od. :n:; Tr%ll:’n:f: nn::;{:::)-t;jihirs. slaliﬁnary and nonstationary
flt?l:;:::.i ete.: difficulty (3) di}auppcurs. Hm'ing gucsscdhllhtl‘
statel o the cstimation (i.c.. filtering or prediction) pro _t:‘?)
cofﬂééily. one is led 10 a nnnllnca_r dlllcrpncu (or dll‘fcrctﬂld
cquation for lhc@manqe matrix of the oplm:mI estimation ]eror.
This is vaguely analogous ta the chn_cr-HupI cquation. So ullum
of the equation for the covariance matrix slaqs at the time .',._ W ]10|1
the first observation is taken: at each later time r_lhc sniuupn_ of
the equation represents the covariance of the optimal prcdjlctlon
error given observations in the interval (£, 7). From the covariance
matrix at time 1 we obtain af once, without further cafcglalmns.
the cocefficients (in genceral, time-varying) characterizing the
optimal linear filter, ‘
(8) The Dual Problem. The new formulation of the Wiener
problem brings it into contact with the growing new theory of
control systems based on the “state” point of view |17-24). 1t
s out, surprisingly, that the Wiener problem is thé dual of the
‘noise-free optimal regulator problem, which has been solved
previously by the author, using the state-transition method to great
advantage |18, 23, 24). The mathematical background of the two
problems is identical — this has been suspected all along, but untjl
now the analogies have never been made explicit,
(9) Applications. The power of the new method is most

type will be discussed
cations, two standard
prediction are included: in these
ear difference equation mentioned
ed even in closed form.

later. To provide some feel for appli
examples from nonstationary

cases the solution of the nonlin
under (7) above can be obtain

Notation Conventions

Throughout the paper, we shall deal majn|

Y with discrere (or
sampled) dynamic systems; in other

words, signals will be gb-
(sampling instaris). By

intervals between
s
7, T will
not at all essential (al leas| from the engineering point
by using the discreteness, however, we can keep the mathematics
rigorous and yet elementary. Vectors will be denoted by small
bold-face letters: a. b,..u.x, Y. ... A vector or more precisely an
n-vector is a set of n numbers Xis «- X5 the x; are the co-ordinates
Or components of the vector x,

Matrices will he denoted by capital bold-face letters: A B, Q,

« -1 they are m x p arrays of elements @, b

franspose (interchanging rows and columns) of

denoted by the prime. In manipulating formulas, it wil] pe
convenient to regard a Vector as a matrix with a single column,

Using the conventional definition of matrix multiplication. e

wrile the sealar product of two n-veciors X,y as

of view):

o Dijoees The
a4 matrix will he

l X'y = it y=y'x

e MM
Fantu T

The scalar produet s clearly a scalar,i.e., not a vector, quantity,

i;atl(r} an i

smoothing

one can then also delermine,
e

Similarly, the quadratic form associated wiy, the
s,

n w LA,
x'Qx = Z.t‘,qu.tﬁ T
1j=1
We define the eXpression Xy where X' js an m-veetor ,
n-veetor Lo be the m x n matrix with elements Xy,

We write £(X) = EX for the expected value of the T
lor X (see Appendix). [t is usually cnm'gnjcnl o omit
after E. This does not result in confusion in simple cases Since
constants and the operator £ commute. Thus EXY' = matriy With
clements E(xy,): EXEY' = matrix with clements E{_r,)E('\-J)_

For easc of reference, a list of the principal symbols yseq 5
given below.

ndy .

an

andopy, |, ce.
the h“"-‘kl.'ls

Optimal Estimates _
[ time in general, present time,
fy  time at which observations start.
Xi(0.x(1)  basic random variables.
ytr)  observed random \'anablc.l
X (0|0 optimal estimate of x,(1)) given (1), e M.
loss function (non random function of its argument),
£ estimation error (random variable).

Orthogonal Projections )
Y(1)  linear manifold generaled by the random variables
M1y o M),

X(yln  orthogonal projection of x(z,) on Y(s).
X (10 component of x(1;) orthogonal to V(r).
Models for Random P:ocessea_
I+ 1;1) transition matrix
Q(n  covariance of random excitation

Solution of the Wiener Problem

X(#)  basic random variable.
Y(r)  observed random variable,
Y  linear manifolq generated by Y(1), ..., y(e).
Z(f)  linear manifold generated by ¥ (dr-1).
X*(t)[  optimal estimate of X(2)) given Y(r).
X (1))

EITOr in optimal estimate of X(1)) given (1),
Optimal Estimates

To have a conerete description or
studied, consider the following situa
2@). Only the sum y(7) = (1) + x%5(1) can be ob.
served. Suppose we have observed and know exactly the values —
this knowledge in regard
atr=1,, where 1y may be
If 1, <1, this is g data-
(;’merpa!ar:'on) p_l_‘oblem. Ifrr = this is called
filtering. It h > 1, we have a Prediction problem, s; nce our treat-
ment will be generg| enough 1o include these
problems, we shal] yse hereafter the collecy Ve term estimation.

As was pointed oyt by Wicner [1]. the natural setling of the
estimation problem belongs to the realm of probabili
statislics. Thus signal, noise, and their sum i) be random
variables, and consequently they may be regarded as random
processes. From (he probabilistic description of the random
processes we can determine the probability with

) vhich a par-
Ueular sample of (he signal and noise will oceur. For any given

Mt)s .., 7(6) Of the random variable y(s)
1 in principle, the probability of
%nﬁg%occunench of various values £,(1) of the random

less than, equal to. of greater than (2

and similar

simult
variable x,(r,). This is the feonditional probability distribution
function
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urement of the random vanables y(1,), ..., v(1) has conveyed about
thc‘mndnm \'nnnl?lc x(1). Any stalistical estimate of lh?: rn;ulnm
\'11r|n}i:lc xy(r) will be some function of this distnbution and
1hcn:l_0r.c a {npnmndom] function of the random \rm-i ables {(,r }(
yu)."l his statistical estimate 1s denoted by X, (|0, or by juﬂ ')‘1 (r'I
or X, when the sct of observed random \-uln'a!hlL:s or lhclljm:: 'lll
\\'hl‘k‘h the estimate is required are ¢lear from contexl. ‘
!'?upposc now that X, is given as a fixed lunction of the random
variables v(7,). ... v(r). Then X, is itsell a random variable and its
actual value is known whenever the actual values of ¥(£;), ... ¥(1)
are known. In general, the actual value of X,(,) will be different
from the (unknown) actual value of x,(¢,). To arrive at a rational
way of determining X,. it is natural to assign a penalty or loss for
incorrect estimates. Clearly, the loss should be a (i) positive. (ii)
nondecreasing function of the estimation error & = x,(t)) = X,(#)).
Thus we define a loss function by |

Li=0
L(es) = Le)20 when €:28,20 (2),
L(g) = L(-€) }

Some common examples of loss functions are: L(e) = ag’,‘aets
= 8 ) . .-
“als], & — exp(—&*)], etc., where a is a positive constant.

One (but by no means the only) natural way of choosing the
random variable X, is to requirc that this choice should minimize
the average loss or risk

Sihce the first expectation on the right-hand side of (3) does not
depend on the choice of X, but only on ¥(fy). ... ¥(#). itis clear that
minimizing (3) is equivalent lo minimizing

E{LLx (1) = Xyt (). e YO} )

Under just slight additional assumptions, optimal estimates can be
characterized in a simple way.
Theorem 1. Assume that L is of type (2) and that the conditional

distribution function F(%) defined by (1) is:
(A) symmetric about the mean’s :

=  gre-E)=1-FE-9

‘SBJ convex for £ < E:

=) LFOE +(1-E) SAFE) + - WF(E)
fa"augl-é: s E

and0<h< |

1) which minimizes the average

Then the random variable x5
loss (3) is the conditional expectation

x5l = Elx (t)ly (1), s YN

by iSherman: [25], lhjf theorem
ll-known lemma in probability

i (5)}
proof: As pointed out recently
follows immediately from a we

(i -~ j - o E
proof: By Theorem 5. (4) (see Appendix), conditional distribu-
tions on a gaussian random process are gaussian. Hence the re-

quirements of Theorem 1 are always satisfied.
In the control system literature, this theorem appears some-
times in a form which is more restrictive in one way and more

general in another way:

E{LLx (1)) = X,(1)1} = ELE{LLX(8) = Xy IbCo) - (O} 3)

-~ forms a ¥

Theclrrern l-a. If 1(g) = ¢, then Theorem 1 is triee without as-
stmptions (A) and (B).
Proof: Expand the conditional expectation (4):

;glx,z(mwo). e (0] = 2X, () ELx (1) DA ) - YO + Xn)

and differentiate with respeet 1o X,(t,). This is not a completely
rigbrous argument: for a simple rigorous proof sce Doob [15]. pp-
77-78.

Remarks. (@) As far as the author is aware, it is not known what
is the most gencral class of random processes {x,(n}. {xaAn} for
which the conditional distribution function satisfies the re-
quirements of Theorem 1.

(b) Aside from the note of Sherman. Theorem | apparently has
never been stated explicitly in the control systems literature. In
fact, one finds many statements to the cffect that loss functions of
the general type (2) cannot be conveniently handled mathe-
malically.

(¢) In the sequel,
valued random variables. |

we shall be dealing mainly with vector-
1 that case, the estimation problem is
stated as: Given a vector-valued random process {x(n} and ob-
served random variables Y(f), - y(r), where y(r) = Mx(r) (M
being a singular matrix; in other words, not all co-ordinates of
X(f) can be observed), find an estimate X(f;) which minimizes the
expected loss ElL(Ix(r) — XD | || being the norm of a
vector.

Theorem | remains true in the ve
re- quire that the conditional distrib
ordi- nates of the vector X(f,),

Prix,(t,) £Epu s 1) S E V(L) oo YOI = FByo e

{ to the n variables &, — By i Ea
here all of these variables are

ctor case also, provided we
ution function of the n co-

&)
be symmetric with respec

and convex in the region W
negative.

_ Orthogonal Projections

The explicit calculation of the optimal estimate as a function of
the observed variables is. in general, impossible. There is an
important exception: The processcé?{x;(r)}, {x(0} are gaussian.

On the other hand, if we attempt o get an optimal estimate
under the restriction L(g) = & and the additional requirement that
the ‘estimate be a linear function of the observed random
variables, we get an estimate which is identical with the optimal
estimate in the gaussian case, without the assumption of linearity
or quadratic loss function. This shows that results obtainable by
linear estimation can be bettered by nonlinear estimation only
when (i) the random processes arc nongaussian and even then (in
view of Theorem 5, (C)) only (ii) by considering at least third-
order probability distribution functions.

In the special cases jusl mentioned, the explicit solution of the
estimation problem is most easily understood with the help of a
geometric picture. This is the subject of the present section.

Consider the (real-valued) random variables y(fo). ..., ¥(#). The
set of all linear combinations of these random variables with real

coellicients =
i

Ea, (i)
1=1y
p old) which we denote by Y(0).
We regard, abstractly, any expression of the form (6) as “point”
or “veetor” in Y(#); this use of the word “yector” should not be
confused, of course, with “yector-valued” random variables, elc.
Since we do not want to fix the value of ¢ (i.c.. the total number
of possible observations), Y(r) should be regarded as a finite-
dimensional ‘subspace of the space of all possible observations.

(6)
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Given any two veclors «, v in Y(#) (i.c.. random variables ?‘<1
pressible in the form (6)). we say that i unq v are orthogonal 1
Emv = 0. Using the Schmidt orthogonalization procedure. as de-
scribed for instance by Doob [15]. p. 151, or by Lotve II(:‘!.. P
459, it is easy to select anl@rthonormal basis in V(. By this is

meant a set of vectors ¢, , .... ¢, in Y(1) such that any veetor in
V(1) can be expressed as a unique lincar combination of ¢, ... ¢,
and =

1 Eee,=8,=1 il i=]
NG (Lj=1ty....0
=0 i i#]

Thus any veclor ¥ in U(r}_ﬁ given by

JERL Dl 1 \
D o
gF Rtjlf\ 1 -“Z""* \
¢ o, \
and so the coefficients a, can be immediately determined with the
aid of (7):
L CEEICIENT P

DERW ATLIN

s , I
E(’J’ = Zﬂ!er}?J = ZH,E{‘FEJ =Za‘au =a,
g =y i1y

It follows further [h'{ﬁ!") o
Y(r)) can be Y
and a pa "
Y. In

V RTHAOWA L

:"‘ l'_:.“:' \ﬂ*“:g‘ﬂ("lj

RIS

— =
_+I=Z(Ere,)e,+.? \

=ny

Thus X is uniquely determined by equation (9) and is obviously
a vector in Y(n). Therefore ¥ is also uniquely determined: it

remains to check that it is orthogonal 10 Y(1):
[ _-‘f(:';i-J - \ EXe, = E(x~TX)e, = Exe, - Exe,

Now the co-ordinates of ¥ with respect to the basis Cipriness € 01
given either in the form Exe, (as in (8)) or in the form Exe, (as in
(9)). Since the co-ordinates are unique, Exe, = EXe; (i =ty v 8):
hence EX¥e, = 0 and ¥ is orthogonal o every base vector ¢, and
therefore to Y(r). We call ¥ the: orthogonal projection'of x on

V). s

There is another way in which the orthogonal projection can be
charactenized: ¥ is that vector in Y(1) (i.c., that linear function of
the random variables y(t,), ..., 1) which minimizes the quad-
ratic loss function. In fact, if w is any other vector in Y, we

have
ERRaR AL 7 ——

A TUAETINN ofF i E(,\'—ﬁ;]: = E(}‘FT—W): =E{(.r—f}+(f—W)1: )
o =

Since ¥ is orthogonal to every vector in Y(r) and in particular

to Y —w we have
VAT HaEonEAN)

N

| stochaslic processes in question are gaussian. then orthogonal

(8)

(9

¥¥(1,|1) = optimal estimate of x(1,) given y(r,), -~
= orthogonal projection X (4,1) of x(1,) on Vi 0\
A" ..
These results are well-known though not easily accessible iy,
the control systems literature. See Doob [15], pp. 7578 3
Pugachev [26]. It s somelimes  CoNVenient to denote

orthogonal projection by
e

~r1 MA {

e | T 10 =x*a 10 =Elxtt) Yol |
=) N —

The notation £ is motivated by part (k) of the theorem: If the

projection is actually identical with conditional expectation.
Proof. (A) This is a direct consequence of the remarks in con-
tion with (10).

ncT,IBK)mSin:-‘E L(”? y(1) are random variables withag%;g_ mean, il is

clear from formula (9) that the orlhogpnal partx (1|0 of x(1)

with respect to thie linear manifold V(1) is also a random variable

with zero mean. Orthogonal random variables with zero mean are

uncorrelated: if they are also gaussian then (by Theorem 5 (B))
they arc independent. Thus RO GEIAL
0 \0 = EX(r|n =E[ X (1 |0v(eg), ... ¥(0)] SIMPUFI ALY

= E[x (1)) =X (1;|0)y(£5). -‘:}‘(fﬂ
= Elx (t)ta)s o YO =X (r_.lr} =0

Remarks. (d) A rigorous formulation of the contents of this
section as { —» o requires some elementary notions from the
theory of Hilbert space. Sce Doob [15] and Loéve [16 [.

L1

(e) The physical interpretation of Theorem 2 is largely a matter ‘
of taste. II' we are not worried about the assumption of gaus-
sianness, part (A) shows that the orthogonal projection is the op-
timal estimate for all reasonable loss functions. If we do worry
about gaussianness. even if we are resigned (o consider only
linear estimates, we know that orthogonal projections are nor the
optimal estimate for many reasonable loss functions. Since in
practice it is difficult to ascertain to what degree of approxima-
tion a random process of physical origin is gaussian, it is hard to |
decide whether Theorem 2 has very broad or very limited sig-
nificance.
(/) Theorem 2 is immediately generalized for the case of
vector-valued random variables. In fact, we define the linear
manifold Y(r) generated by y(z,), ..., ¥(1) to be the set of all linear
combinations - ~——(VECTOR~ VALLE D

RAuloin VA EINSL =5

! i

2 a0
i=t =} S —— E'_KT.E-"-'S‘ IC‘.,’\."

of all m co-ordinates of each of the random vectors Vit), ...y,
+ The rest of the story proceeds as before.

., . g o () Theorem 2 slates in effect that the optimal estimate under

Crpnesnon oF Ceeft E(x-W)"=E(x-3)" + E(X-%)’ 2Ex-%*  (10) | \conditions (A) or (B) is a lincar combination of all previous ob-

;_. o T OF - e == : d servations. In other words, the optimal estimate can be regarded

] This shows that, if W also minimizes the quadratic loss, we must, a5 (hé output of a linear filter, with the input being the actually
have  E(X-W)"=0 which means that 'the random } i

Variables X and  are equal “(except possibly for a set of events

whose probability is zero).
These results may be summarized as follows:

Theorem 2. Let {x(1)}, {y(1)} random processes with zero mean

(te.. Ex(1) = Ey(1) = 0 for all 1). We observe y(t,), ..., y(1).
If either

(A) the random processes {x(t)}. {y(n)} are gaussian; or

occurring values of the observable random variables; Theorem 2
gives a way of computing the impulse response of the optimal
filter. As pointed out before, knowledge of this impulse response
is not a complete solution of the problem; for this reason, no

explicit formulas for the calculation of the impulse response will
be given.

Models for Random Processes

In dealing with physical phenomena, it is not sufficient to give

(B) the optimal estimate is restricted to be a linear function of @ empirical description but one must have also some idea of the

the observed random variables and Lig) = &2

then

' underlying causes. Without being able to separate in some sense

causes and effects, i.e., without the assumption of causality, one
can hardly hope for useful results.

Transactions of the ASME—-Journal of Basic Engineering, 82 (Series D): 35-45. Copyright © 1960 by ASME




It1s a fairly dgcncnllllg- accepled fact that primary macroscopic
sources of random phenomena are independent eance ‘ .
esses.” A well-known example is the nnisﬂ mlll:ire&;},:-t:‘jll?:cdp::‘-;
resistor duce to thermal agitation. In most c;lscs.';bservgd mudnl;
phenomena are not describable by independent random variables.
The szlausilcn}_flu:m‘nd_cncc .('gqrrelalion] between random signals
observ cd_:lt dilferent times is usually explained by the prcscni:c of
a dynamic system between the primary random source and the
observer. Thus a random function of time may be thought of as the
output of a dvnamic system excited by an independent ganssian
random process. ’

Al'! mmportant property of gaussian random signals is that they
remain gausstan afler passing through a linear system (Theorem 5
(A)). Assuming independent gaussian primary random sources. if
the observed random signal is also gaussian, we may assume that
!hc dynamic system between the observer and the primary source
s firleqr. This conclusion may be forced on us also because of
lack of detailed knowledge of the statistical properties of the
i?_hSL‘F\'cd random signal: Given any random process with known
lirst and second-order averages, we can find a gaussian random
process with the same properties (Theorem 5 (C)). Thus gaussian
distributions and linear dynamics are natural, mutually plausible
assumptions particularly when the statistical data are scant,

How is a dynamic system (linear or nonlinear) described? The
fundamental concept is the notion of the.stare. By this is meant,

intuitively. some quantitative information (a set of numbers, a
function. cte.) which is the least amount of data one has to know
about the past behavior of the system in order to prediet its luture
behavior. The dynamics is then described in terms of 'state
fransitions, i.c., onc must specify how one state is transformed
into another as time passe

n.may be described in general by the

vector differential eauation
CJEM | dwddr = F(ox + D(nu(n
M Y A YALL
“and (12)
YA B y(n) = M(x(1) /

where X is an n-veclor, e srare-of the system (the components .x,
of X arc called state variables). U(r) is an m-veclor (m = n)
representing the inputs to the system: F() and D7) are n x 1,
respectively, nt x m matrices. If all coelficients of F(r). D(o), M(1)
are constants, we say that the dynamic system (12) is fime-
invariant or stationary. Finally. y(1) is a p-vector denoling the
outputs of the system; M(#) is an n X p matrix: p < n

The physical interpretation of (12) has been discussed in detail
elsewhere |18, 20, 23]. A look al the block diagram in Fig. | may
be helpful. This is not an ordinary but a matrix block diagram (as
revealed by the fat lines indicating signal flow). The integrator in

uith yif)

Di

Fig 1. Matrix block diagram of the general linear continuous-dynamic
system

5 The probability distributions will be gaussian because macroscopic
random effects may be thought of as the superposition ol very many
microscopic random effects; under very general conditions, such ag-
gregate effects tend to be gaussian, regardless of the statistical properties
of the microscopic effects. The assumption of independence in this context
is motivated by the fact that microscopic phenomena tend to take place
much more rapidly than macroscopic phenomena: thus primary random
sources would appear to be independent on a macroscopic time scale.

Of course (Theorem =

Fig. 1 actually stands for n integrators such that the output of

cach is a state variable; F(s) indicates how the outputs of the
integrators are fed back to the inputs of the integrators. Thus f(#)
is the cocfficient with which the output of the jth integrator is fed
back to the input of the ith integrator. It is not hard to relate this
formalism to more conventional methods of lincar system
analysis.

If we assume that the system (12) is stationary and that u(s) is
constant during each sampling period, that is

uir+=u(n: 0<r<l, r=0.1.... (13)

then (12) can be readily transformed into the more convenient i

discrete form.
piSeGL=

where |18, 20|

o = =

[ MI):cpr:i Fi/i! (FO=unit matrix) . -E‘( l \J

— 0 :
and == LEFNM oF

Dery

Fig 2. Matrix block diagram of the general linear discrete-dynamic
system

See Fig. 2. Onc could also express exp Frin closed form using
Laplace transform methods |18, 20. 22, 24]. If u(r) sausfies (13)
but the system (12) is nonstationary. we can write analogously

o ]

x(r+ D) =@ Hx(n+A(Du(n: t=0.1.... ]E.‘,-I._Nﬂ_,

-
=

v [y

lj.

| X(t + 1) =D(r + 1; Ox() + Au(s) iy N

N

A aTlawhRY

>

>

o=

-

r=0,1,... (14 1—

y() = M(O)x(#) ) I

N ——— ;
but of course now @ + 1: #), A(r) cannot be expressed in gen-
eral in closed form. Equations of type (14) are encountered fre-
quently also in the study of complicated sampled-data systems
|22]. See Fig. 2 . :

“O(t + 1; 1) is the transition matrix of the system (12) or (14).
The notation @(1-: 1,) (£, #; = integers) indicates transition from
time 1, to time £.. Evidently @(r; #) = | = unit matrix. If the system
(12) is stationary then @(r + L 1) = @t + | — 1) = ®(1) = consL.
Note also the product rule: @(r: 5)@s; r) = ®(¢; r) and the inverse
rule @'(r: 5) = D(s: 1), where 1, s, r are integers. In a stationary
system, @(r: 7) = exp F(r— 7).

As a result of the preceding discussion, we shall represent ran-
dom phenomena by the model

Lr ;JE'!\.E
SYSTEM
“pap ol -

ot

=
X(r+ 1) =@+ 1 0X() +u(n) (ls%ﬁn e

] -
where {u(n} is a veclor-valued; independent; gaussian random

process, with zero mean, which is completely described by (in
view of Theorem 5 (C))
— i

“Bu() =0 forall r; N HE
Eunu'(s)=0 ifr#s | r';. il S
Eu(nu'(r) = G(1).

X(1)is then also a gaussian random
process with zero mean, but it is no longer independent. In fact, if
we consider (15) in the, steady stale (assuming it is a stable sys-

tem), in other words, il we neglect the initial state X(#,). then
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r-l

A1) = z D+ Hulr).

Therefore if 12 s we have

J i

R

| EX(OX'(s) = z O r+ DA D(sr+ 1)

\
Thus if we assume a lincar dynamic model and know the
statistical properties of the gaussian random excitation, it is casy
to find the corresponding statistical properties of the gaussian
random process {X(1)}.

In real life, however, the situation is usually reversed. One is
given the covariance matrix EX(nX'(s) (or rather, one altempls o
estinuite the matrix from limited statistical data) and the problem
15 10 get (15) and the statstical properties of u(r). This is a subtle
and presently largely unsolved problem in experimentation and
data reduction. As in the vast majority of the engineering
literature on the Wiener problem, we shall find it convenient to
start with the model (15) and regard the problem of obtaining the
model itself as a separate question. To be sure, the two problems
should be optimized jointly if possible: the author is not aware,
however. of any study of the joint optimization problem.

In summary, the following assumptions are made about random
Processes:

Physical random phenomena may be thought of as due to
primary random sources exciting dynamic systems. The primary
sources are assumed fo be independent gaussian random

* processes with zero mean; the dynamic systems will be linear. The
random processes are therefore described by models such as (15).
The question of how the numbers specifving the model are
obtained from experimental data will not be considered.

Solution of the Wiener problem

Let us now define the principal problem of the paper.
Problem \. Consider the dynamic model

X(r+ D)y=Dir+ 12 OX() + uls)
y(n) = M(nx(r)

(16
(7))

where U(r) is an independent gaussian random process of n-
vectors with.zero mean, X(1) is an n-vector, ¥(1) is a p-vector (p <
n), ®r + 121, M(t) are n x n, resp. p x n, matrices whose
elements are nonrandom functions of time.

Given the observed values of Y(t,), ..., Y(0) find an estimate
X*(r)|0) of X(t,) which minimizes the expecied loss. (See Fig. 2,
where A(n) =1.)

This problem includes as a special case the problems of filter-
ling. prediction, and ‘data smoothing mentioned earlier. It in-
cludes also the problem of reconstructing all the state variables of
a linear dynamic system from noisy observations of some of the
state variables (p < n/).

From Theorem 2-a we know that the solution of Problem 1 is
simply the orthogonal projection of X(t) on the linear manifold
V(1 gencrated by the observed random variables. As remarked in
the Introduction, this is to be accomplished by means of a linear
(not necessarily stalionary!)'{dynamic system of the general form
(14). With this in mind, we proceed as follows.

Assume that Y(f,), ... Y(f — 1) have been measured, i.e., that Y(r
— 1) is known. Next, at time ¢, the random variable y(1) is
measured. As belore let ?(rlr — 1) be the component of y(r)
orthogonal to Y(r — 1). If ¥ (f)t — 1)=0. which means that the
values of all components of this random vector are zero for almost
every possible event, then Y(r) is obviously the same as Y(r— 1)
and therefore the measurement of Y(r) does not convey any addi-
tional information. This is not likely to happen in a physically
meaningful situation. In any case, Y (#|f — 1) generates a linear

manifold (possibly 0) which we denote by Zin. By definition &
V(- 1) and Z(1) taken together are the same mamf:_uld as Y.
and every vector in Z(¢) is orthogonal to every vector in Vie-1).
Assuming by induction that X*(¢, — 1} = 1) is known, we can
wrile: . .
XEln = E XY= E XY= D]+ E X)) Zo]
= @+ L0 X = =D+ EJutt = DIY(= 1)
+EX(n)IZ(nl (18)

Where TReTasTITTic 1s obtained using (16).

Let 1, = £ + 5, where s is any integer. If s 2 0, then u(f = 1) is
independent of Y(r = 1). This is because u(f, — 1) = u(r + 5 — 1) is
then independent of u(r - 2). u(r - )y ae a_nd therefore by (16—
17). independent of Y(t,). ... y(t = 1). hence mdcpchcm_ 0{ Yir -
). Since. for all ¢, u(z,) has#€ro mean by assumption, it follows
that u(n — 1) (s 2 0) is?‘l}\og‘aﬁﬂ to Y(r—1). Thus if s 2 0. the
second term on the right-hand side of (18) vanishes: il s <0,
considerable complications result in evaluating lhll.‘i term. We
shall consider only the case #, = ¢. Furthermore, it will sulfice to
consider in detail only the case f; = £+ 1 since the other cases can
be casily reduced to this one.

The Tast term in (18) must be a linear operation on the random

variable ¥ (¢t — 1): e\ N
E & ~ Fu P -
Ex(r+ DIZ0]=AXDy (- 1) (19))*“ oA
whurc‘ﬁ!‘(f} isan n X p malri;:_and the star refers to fji‘nplirmﬂ
Tiltering™. _
The component of y(f) lying in Y — 1) isy(ft — 1) =
M(nx*(1)t = 1). Hence . = . FE S

? e g
V=1 =y =y (e—1) = y() — M(OxX*(efe = 1). (20) i {;«?k‘i o
! Ml : =

Combinir-lg_( 18-20) (see Fig. 3) we obtain

. eTATT=
X5+ 18 = @*(r+ 1 nx*(rr— 1) + A*(ny(n) @1 | p a5
where
D1+ 1,0 =@+ 11— A*(OM(1)

(22)

Thus Gptimal estimation 1s performed by a linear dynamic
system of the same form as (14). The state of the estimator is the
previous estimate, the input is the last measured value of the
observable random variable y(r) , the transition matrix is given by
(22). Notice that physical realization of the optimal filter requires
only (i) the model of the'random process.(ii) the operator A*(7).

The estimation error is also governed by a linear dynamic
system. In fact,

X(r+ 1) =x(r+ 1) =25+ 1)) |27
=@+ 1; 0X(0) + u(n) —D*(r+ 1; Nx*()e - 1)

— A*(M(NX(1)

¥ REDy

k(1 + 5
={ D+t

PAQCESS
K | !
M

Tom=1)

- MODEL __QF___BANDOM
<i-1)

yim-1

P I—

{*'ﬂ*‘ll-‘l

Fig. 3 Matrix block diagram of optimal fiiter
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F@*(I+I:I}§[f|f—il+u{ﬂ 1 ' (23)

I'hus @* is also the transition matrix of the linear dynamic system
governing the error. i ’

From (23) we oblain at once a recursion relation for the co-
variance matrix P*(1) of the opuimal error X (flr - 1). Noting that
u(r) is independent of X(r) and therefore of X (f)f = 1) we gel '

| PHr+ ) =EX(t+ DX+ 1|n
A
Il =@+ LLOEX (= DX (= O (14 1.0+ Q1)
o\ =@+ LLOEX ()= 1) X (= @1+ 1:0) + Qo)

=@+ LLOPHOD'(r+ 10+ Q)

where Q(1) = Eu(nu'(n).
There remains the problem of obtaining an explicit formula for
A* (and llwa alm for ®*). Since,

(241‘

= :f_ez\w\*—-’! R (1 + DIZ =X+ 1) - E X0+ DIZ0]

is orthogonal w0y (1| = T). it follows that by (19) that
= E\X(r+ 1) - AXn Y (e = DY =1
1 = A*DE y (= 1y "Gl =1

Noting thatX (7 + 1]t — 1) is orthogonal to Z(), the definition of
e P(r) given earlier, and (17), it follows lurther

( U_ EX(t+ =10y "= 1) = A*(OM(OP*(nM'(1
DM'(n)

=Ex(t+ )y 'l -

= El@®(1+ 1;0X (fr = 1)+ urje— 1] X ") -

e e S
_ Finally, \II1LC u(n) |\1nd¢,pcndt.m ol x(n,
’.)-,L_ *70= 1+ 1P (OM() - A (OMOPHOM'(). |

Now thc matrix M{AP*(n)M'(nHwill be'lpositive definite and hence
vinvertible whenever P*(1) is positive definite, prov ided that none

of the rows of M(#) are lincarly dependent at any time, in other
words, that none of the observed scalar random variables y(1), ...,
y,(f). is a linear combination of the others. Under these
circumstances we get linally:

Lf‘ M AR
| AR =®(1 + 1 nP*OM' (DIM(OPHOM' (0]

J
~/ Since Observations start at £, x{m — 1) = X(1,): 1o begin the
lll..l"’lll\L‘ evaluation of P*(1) h\ means of qulauon (24). we must
obviously specify P*(1,) = EX(1)X'(#,). Assuming this matrix is
Tpositive definite, equation (25) then )leids A*(.'U). equation (22)
@*(r, + 1. 1,). and equation (24) P*(r + 1), completing the cycle.
If now Q(r) is positive definite, then ail the P*(r) will be positive
definite and the requirements in deriving (25) will be satisfied ‘at
“each step.

Now we remove the restriction that r, = ¢ + 1. Since u(1) is
nnhogon;t} to Y(r), we have .

X*(1+ 1) = E [@( + 12 0x(n) + un|Y(n] = s s .-)x*um\

ence 1l @t + 1: 1) has an inverse @®(f; ¢ + 1) (which is always the
case when @ is the transition matrix of a dynamic system
dcwnbablL by a differential cquation) we have

r X5 = (et + 1)X*(r + ny
If.' Zt+low cm“encb\ repeated application of (16) that
D+ 5.0+ Dxir+ 1)

1 o) ‘f‘.
_J.,M.

A
As

e

x(r+s]

-1
+Y @+l IU+T)

rl

u(r + 1) are allioethogonal (6%Y(1),

Since u(r+s—1), ...,

— A (OM(NPH*(nM'(1).|

(25)

-

X*(t+ sl = E [x(1 + )| Y] \

= E @+ 5.1+ Dx(r+ DY

=@r+st+ DX+ 1D (s21)

If 5 < 0, the results are similar. but X*(1 — s will have (1 -
,sl(n - p) co- {‘erll‘l.lT.(.‘Q
may be summarized as ollows:

Consider Pmbk’m;" ¢ :ph'}m.'f estimate X*(1 + I|_.') of X(1 +
1) given Y(1,). ... Y(t) is generated by the linear dynamic system |

; X1+ 1) = @1 + 1 0X*(flr - 1) + AX0y() 2n |
The es ¢

timation error is given by

fiu+|[n:¢*u+|;nim:-|;+u(n 23
The covatiance matrix of the estimation error is
cov X(flr-1)=EX (=N X0l = 1)=P*Q1) (26)
The expected quadratic loss is ¢\,
‘ iEi",:(rlr—l) = lrace P:(r) (27’;i )

The matrices A% (1), @*(t + 12 0). P*(1) are generated by the

recursion relations

iyl
A =1+ 1: DPHOMIDIMOPH DM @8
I T4 P =
@1+ 1.0 = B+ 1.0 =AM Bt (29) e 0
PHr4 1) = @1+ 1P (D' (1 + 1:1) MR
+ Q) (30)
In order to mrn. out the iterations. one must specify the
covariance P*(1,) of X(1,) and the covariance Qn of uln.
Finally, for any s 2 0, if @ is invertible o MAL
XE(L+ s =D+ s L+ DXF(+ DI 47,5 =
S
=@+ s;t+ DO+ Lo®(rnr+s-1) '1’: ey 7S
xx*(r+r-l|r—|; )

y ot

+ @1+ 5.1+ DAY 3 1}\7[
“so That the estimatex*r=-sf-ts=0yis also given by a linear dy-

namic system of the type (21).
Remarks. (/1) F]ummlung A* and ®* from (28-30). a nonlinear
(difference equation is obtained for P*(1):

= ®(r + 1; D{P*(1) - PHOM(DOIMOP*(OM' (0]
x PH(OM(n}@®'(r + 1: 0+ Q1) t=t,

P41+ 1) a5
(32)

“This_ cquation™is Tinear only if M(1) is invertible but then the

problem is trivial since all components of the random vector X(f)
are observable P¥(t + 1) = Q(1). Observe that equation (32) plays
arole in the present theory analogous to that of the Wiener-Hopf
equation in the conventional 1henr}

Once P*(1) has been computed via (32) starting at t = 4. the
explicit specification of the optimal linear filter is immediately
available from formulas (29-30). Of course, the solution of
Equation (32), or of its differential-equation equivalent, is a much
task than solution o the Wiener-Hopl equation.

(1) The results stated in Theorem 3 do not resolve completely
Problem 1. Little has been said, for instance, about the physical
significance of the assumptions needed to obtain equation (25),

(s21) ;ﬁf)e convergence and Stability of the nonlinear difference equa-

“tion (32), the stab:hty of the optimal filter'(21), ctc. This can
ac}uall) be done in a completely satisfactory way, but must be
left to a future paper. In this connection, the principal guide and
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tool turns out to be the duality theorem mentioned briefly in the
next section. See [29].

(j) By letting the sampling period (equal to one so far) ap-
proach zero, the method can be used to obtain the specification of
a differential cqualmn for the optimal filter. To do this, ie.,
pass from equation (T4) 1o equation (12), requires computing the
logarithm F* of the matrix @*. But this can be done only if ®* is

“nonsingulap—which is casily seen not o be the casc. This is |

Abecause 1t Is sufficient for the optimal filter to have n - p stale

:-.\A'\' variables, rather than n. as the formalism of equation (22) would

seem Lo imply. By appropriate modifications, therelore, equation

(22) can be reduced to an equivalent set of only 1 — p equations

whose (ransition matrix is nonsmguiar. Details of this type will be
covered in later publications.

(k) The dynamic system (21) is. in general, 'hpnstau(mm This
is due to two things: (1) The time dependence of @1 + 13 £) and
M(1): (2) the fact that the estimation starts at 1 = £, and improves as
more data are accumulated. 1f @, M are constants, it can be shown
that (21) becomes a stationary dynamic system in the limit 1 — o0,
This is the case treated by the classical Wiener theory.

(/) 1t is noteworthy that the"derivationsigiven arc ot affected
by the nonstaumanl)i}}ni the model for X(1) or the finiteness of
available data. In fact, as far as the author is aware, the only
explicit recursion relations given before for the growing-memory
filter are due to Blum [12]. However, his results are much more
complicated than ours.

(1) By nspection of Fig. 3 we see that the optimal filter is a

jfeedback system. and that the signal after the first summer is
&}ule noise since Y (ff — 1) is obviously an orthogonal random
process. This corresponds to some well-known results in Wiener
filtering. see, e.g., Smith [28], Chapter 6, Fig. 6-4. However, this
is apparently the first rigorous proof that every Wiener filter is
realizable by means of a feedback system. Morcover, it will be

shown in another paper thaf such a filter is always stable, under
very mild assumptions on the model (16-17). Sce [29].

The Dual Problem

Let us now consider another problem which is conce ¢
very different from optimal estimation. namely, lheﬂ
regulator problem. In the simplest cases, this is:
 Problem ll. Consider the dyvnamic system

[ g P! X(1+1)= ®(t+1; HxX(r) + M(r)u(r) (33)
' where X(t) is an n-vector, U(f) is an m-vector (m < n) ) .M are

n X nresp. n X i matrices whose elements are nonrandom func-

tions of time. Given any state X(1) at time 1, we are

... WT) of control vectors which"n

r\‘ ,‘,\}‘}*

T+1 \
\ VIx(l= 3 x(mQeox(m) |
=i |

d—

Where Q(1) is a\pos ¢ matrix whose elements are
nonrandom functions of time. See Fig. 2, where A= M and M =1

Probabilistic considerations play no part in Problem II: it is
implicitly assumed that every state variable can be measured
exactly at each instant ¢, r + 1, .... 7. It is customary to call T2 ¢
thelterminal time (iwmay be infinity).

The first general solution of the noise-free regulator problem is
due to the author [ 18]. The main result is that the optimal control
veclors U*(f) arc”ponstationary linear functions-of X(1. After a
change in notation, the formulas of the Appendix, Reference [IS}
(sec also Ret erence [23]) are as follows:

u*(rn) = A*(r)x(r) (34)

Undcr optimal contfol as given by (?4)‘th?:'w equa-
tions for the system are (see Fig. 4]

A% =IM'(n PHoM@] M OP @+ 1.0 (35)
o*un;n:oun:n-MmA*m ey OB
Prr—1) = @+ LOPHN @1+ 10
I onhran s 2 (37) |
Initially we musl sel PXD=Q(T+ F% %
___PHYSCAL_SYSTEM_TO_BE_CONTROLLED A prG s
i = =
. (1) i)
uit) N l;ﬂ:l] 4 iw

p A

N X(1+

D=®*r+ LOX(D |
and lhc minimum pulormanu “index at imer1s given by
¢ &R ARG v*[x(n|— X' (NP1 = 1)X(1)

The matrices A"‘(.'), GD”(I 3 e
the recursion relations;

) P"{r) are determined by

. |
(te11) ‘
-1 ‘
Fig. 4 Matrix block diagram of optimal controller

Comparing equations (35-37) with (28-30) and Fig. 3 with
Fig. 4 we nolice some interesting things which are exprcssed
precisely by

Theorem 4. (Duality Theorem) Problem I and Problem Il are
duals of each other in the following sense:

LetT12 e every matri ¥ n (28-30) by
hen One has (35-37). Converseh replace
every malrix X (T - 1) in (35-37) by X'(t, + 7). Then one has
(28-30).

Proof. Carry oul the substitutions. For ease of reference, the
dualities between the two problems are given in detail in Table 1.

observation.

Q(t, + ) covariance of ran-
dom excitation.

Table 1
\ Prablem | Problem II _
1 X(r) (unobservable) state X(f) (observable) state varia-
\ variables of random proc-  bles of plant to
ess, ) regulated.
2 Y(1) observed random varia-  u(r) control variables
(=1
3 1, [irst observation. T last control action.
4 O+ T+lif+1)transition @ (T_r41:T—1) transi-
Pr:}(atnx ; " tion matrix.
5 I§ +.1) covariance o ® 4
optimized estimation error. Pl_;:: f:gmrrlz_gr;r;)xﬂ?gnc}]\;dm
index under optimal regu-
A% ) . £ ,lation.
6 ty + 1) weighting of ob- At('r 1) weighti
= eighting  of
::;Li‘}ll'_lo“ for optimal esti state for optimal control.
7 D%+ 1+ 154+ 1) transi- 6*(7-_.” 1: T=1) transi-
tion matrix for optimal es- tion matrix under optimal
timation error. _regulation.
8 M, + 1) effect of state on

M(T 1) effect of control
_vectors on state.

Q(T-1) matrix of
quadratic form defining
error criterion.

Remarks. (1) The mathematical significance of the duality be-
tween Problem | and Problem 1I is that both problems reduce to
the solution of the Wiener-Hopf-like equation (32).

(0) The physical significance of the duality is intriguing. Why
are observations and control dual quantities?
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Recent research [29] has shown that the essence of the Dualiy

Theorem lies in the tl%ﬂ_j__ly of constraints at the output (repre-
sented by the matrix "I in Problem 1) and constraints 'llplhc
input (represented by the mmrii@_ﬁ (1) in Problem 11y -

~ (p) Applications of Wiener's methods to the .
free regulator problem have been known for o long time: s the
recent Lextbook of Newton. Gould, and Kaiser |27] Hun-:\l- -L ht-
conncetions between the two problems, and in Imrlictulfr. :IL
dlli\|ll)’ ; Ill&wnll}' never heen stated precisely h;I'nrc s

(q) The duality thearem.offers a powerful too] for developi
more deeply the theory (as opposed to the computation) of Wi‘li::lgr

filters, as mentioned | c (i) The :
T A8 m Remark (i). This will be ko
clsewhere lz{)l e ;‘lllbllthd

solution of noise-

Applications

The power of the new approach to the Wiener problem, as ex-
pressed by Theorem 3, is most obvious when the d;ltn.nf li.w
pml_ﬂcm are given in numerical form. In that case one simply
performs the numerical computations required by (‘28—30). Re-
suits of such calculations. in some cases of practical engineering
mterest, will be published elsewhere. .

When the answers are desired in closed analytic form, the itera-

tions (28-30) may lead to very unwieldy expressions. In a few
cases, A* and @ can be put into ﬂ Without dis-
cussing here how (if at all) such closed forms can be obtained., we
now give two examples indicative of the type of results to be ex-
pected.

) FTxarnp!e"L Consider the problem mentioned under “Optimal
Estimates.” Let x,(1) be the signal and x,(1) the noise. We assume
the model:

—

aPE=
X+ 1) =gy (0 + Lonxy(n + uy(n M

~sLAPMeMS

The speciTic data for which we desire a solution of the estimat \
problem are as follows: :

1 ty,=t+1;,=0

2 Exj(0)=0,ie.,x(0)=0

3 Euf(n=a’ Ed’ () =5, Euy(f) us(1) = 0 (for all 1)

49+l ¢ =co wHAT = 7 <

A simple calculation shows that the following matrices satisfy
the difference equations (28-30), for all r= 4

AEhee Bauall

=l

‘ 3 wp) = | $1CD

[AMN 0=
MNTRICED wu+1:n=[¢”“‘c"” 0]
0 0
P = a*+¢,76°Clt) 0
0 b

b:
where | C(1+1) = 1= 120 (38)

@ +b° +4,°b°Cl1)

Since it was assumed that x,(0) = 0, neither x,(1) nor x,(1) can
be predicted from the measurement of y(0). Hence the meas-
urement at time 1 = 0 is useless, which shows that we should set
C(0) = 0. This fact, with the iterations (38), completely deter-
mines the function‘&ja. The nonlinear difference equation (38)
s“thé"fole-of the*Wiener-Hopf equation:-+

“If b¥a® <<I, then C(r) = | which is essentially pure prediction.
If b%a® >>1, then C(t) = 0, and we depend mainly on x,*(flt - 1)
for the estimation of x,*(z +1|¢) and assign only very small weight

o the measurement y (1) : this is what one would expect when the
measured data are Very noisy.
~In any case BEEHEST1) S 0 4tall 1imes:Jore&inot predict
\independent.noise! This means that ¢ *,, can be sl equal to zero.
¢ optimal predictor is a first-order dynamic system. See
Remark (5), )
To find the stationary Wicner filter, let f = o on both sides of
(38), solve the resulting quadratic equation in C(o0), elc,
‘Example 2. A number or particles leave the origin at time £, =0
with random velocities: after 1 = 0, cach particle moves with a

It (unknown) velotity. Suppose that the position of one of
these particles is measured, the data being contaminated by
| ary ﬁ#ﬂmﬁ‘.’giﬁmlmﬁfﬂnﬁe, What is the optimal estimate
of the position and velocity of the particle at the time of the last
measurement”?

Let v (1) be the position and x(#) the velocity of the particle:
Xa(1) is the noise. The problem is then represented by the model,

X+ D =x(n + xa0 obE L
i+ 1) =x(n
Nyl + 1) = gt + 120030 + 14(1)

v =x,(n+ x50

and the W e

I t,=£46=0

2 ExX(0) = Exs(0) = 0, Exy(0) =@’ > 0:

3 Euy(n=0,Eu (= b

4g5i(r+ 101 = ¢y = const.

According to Theorem 3, X*(s|r) is calculated using the
dynamic system (31).

First we solve the problem of predicting the position and ve-
locity of the particle one step ahead. Simple considerations show

W that _, -
xa(r+ 1)= u:(f) ix ,U;\_t.‘.h_-..q 9 a: a:' 0 0 \
] :"_-’_,' i
Vi1 = X0 + xa(0) ” 5 P=(l) = a E: 0 and A%*0) =0
_’_hr i o \'I it
T e 0 0 & l

Itis then casy to c.@ck by substitution into equations (28-30) that

P*(r) = Cu=D)
i ' —gaat(1-1)
x t 1 —d(r—1)
L ~Putlt=1) —gu(1=1) 45°t-1)" +C (e=1)
is the correct EXpression ovariance matrix ol the predic
tion error X (#f]r— 1) for all = I, provided that we defj Ilc AL WU

1 ¢ =t

= - 3 E
C(n=Cr=1)+ |f_- g(t=DF. 121 R

It is intercsting to note that the Tesults just obtained are valid
also when @,, depends on 1. This is true also in Example 1. In
conventional treatments of such problems there seems to be an
essential difference between the cases of stationary and nonsta-
tionary noise. This misleading impression created by the con-
ventional theory is due to the very special methods used in
solving the Wiener-Hopf equation.

Introducing the abbreviation TRANIE
C(0)=0 | _; e

Cn=t=g1-D. 121 j
and obsérvit at = . :
cov X(t+ 1 =PHr+ 1) ¢

=®t+ 1 Dlcov X (AN + 1; 0 + Qo) I

KE
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the matnices occurring in equation (31) and the covariance matrix

of X (1l are found after simple calculatons. We have. forall 12
0.

1C (1)

=| GO
lam-cin]

_ | I— _

- \¢(!;T+I}¢’(r+]:r)0(r+l:n |

D1+ I)A*mrFI_

CN=1C(n  CUN=1Cy(n)
=Gy C(n-C,(n
“CUNHICUN —Ci(N+1Cs (1)

=Pt Ca(1)
=Gy
+@4,tCA (1)

| = —_—

] C,(n)

~
| < e 2
cov X (#n) = Exulr)x‘(dn:_L '
(n
|

2

P
To gain some insight into the behavior of this system, let us
examine the limiting case 1 — = of a large number of observa-

uonsFtien C,(r) obeys approximately the differential equation
AR T )

iag P e T
l dC\(nldt = CX(n

{-\—.fxa‘) '.-—:I\ 1
I from which we find

o R
WIS CUD R (L= G203+ (1 = ) + s+ bl \

l.':v)l)_

B

ot —
ol r>>1) (39
Using (39). we get further.
I
. I I 0 0
~EeATTv |
QOP=~ |0 1 0] and ®'A* = |0 (t>>1 |
e =l =10 I
“Thus as the number of “observations becomes i;lrge, we depend
almost exclusively on x,*(1]f) and x,*(#)1) to estimate X+ 1+
1) and %% + 1| + 1). Current observations are used almost
exclusively toestimate the noise :
(:‘3*(1'1:) =y, 50 - x,*(1)n) (t>>1) l
One would of course expect something like this since the prob-
lem is h 11 ey 'Ln
As a second check on the reasonablencss of the results given,
observe that the case 1 >> | is essentially the same as prediction
based on continuous observations. Setting ¢, = 0, we have
A o FLEQ | 32
| = = 4 a abt i =
A { \'s.’»}:: EFX, (una——bz e (t>> 11 ¢y3=0)

which is i&cnlic‘pl‘-wilh"ﬂic resull obtained b)f’Sh'i?il')r't“:rtI [11].
Example 1, and ‘Solodovnikov [14], Example 2, in their treat-
ment of the Wiener problem in the finite-length, continuous-data
case, using an approach entirely different from ours.

Conclusions

This paper formulates and solves the Wiener problem from the
“state™ point of view. On the one hand, this leads Lo a very gen-
eral treatment including cases which cause difficulties when at-
tacked by other methods. On the other hand, the Wiener problem
is shown to be closely connected with other problems in the
theory of control. Much remains to be done to exploit these
connections.

|
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APPENDIX
<ANDOM PROCESSES: BASIC CONCEPTS

For convenience of the reader, we review here some elementary

definiions a
I'E\'l‘.‘l'}lhmg 15 fl'fCSC'Il
greaer depth and bre
[15].

A on variable is a funct hose values depend on the
outcome ol a chance evenl. The of a random variable may
be any convenicent mathematical entities; real or cnmpicf\
numbers, vectors, ete. For simplicity. we shall consider here only
real-valued random variables, but this is no real restrction.
Random vanables will be denoted by v, v, ... and their values by £.
1. -... Sums, products, and functions of random variables are also
random variables,

A random variable x can be explicitly defined by statin
probability that x is less than or equal (o some ¢ }
oA 'ghis is expressed symbolically by writing
ALY
A RIS (=] Prix<B)=F(&): F(-20)=0,F [+ ) =1 I;

ted with the utmost possible simplicity: for
adth, consult Laning and Battin |5] or Doob

g the

F\(€) is called the' probability distribition function of the random
varable x. When F () is differentiable with respeet Lo &, then
fE) = dF (E)/d% is called the probability density function of x.
The expected value (mathematical expectation, statistical
average. ensemble average, mean, clc., are commonly used
synonyms) of any nonrandom function g(x) of a random variable x
is delined by
o | 7
I R - : .
P | Egto) = Elglol= [ g@)dF &)= [ s@f @ (0]
VI L N ..__-r ) s =X 1
VN As indicated, it is of(ei convenient (© omit the brackets after the
s)rflb_nlrf.‘. A sequence of random variables (finite or infinite)
' {0} = e x(=1), 50}, x(1), .. (41)
is calledd (oF discrete-parameter) randont (o stochastic)
process. One particular set of observed values of the random
process (41)
CEAUZATM | E-1),E0).E( - \
— —
n (or a sample function) of the process. In-

ndom process is simply a set of random variables
bring the notion of time

( [=

W ¥
P~

A

is called afi
itively, a ra
which are indexed in such a way as lo
into the picture.
"A_ random process is| :

L Y

SN Exton(s) = EXOEX)
ermore,
1l LY | Ex(nx(s) =0
then the random pro-c-_.cs; i§ ori iogonal. Any uncorrelated random
process can be changed iflo orthogonal random process by re-
placing x(1) by x'(1) = (1) — £x(1) since then
Ex'(Dx'(s) = Elx(r) = Ex(0) | x(s) — Ex(s)]

= Ex(x(s) — EX(NEx(s) =0

It is useful to remember that, if a random process i§ orthogonal,
then

T Bty A K+ P S EREFES W)+ (W # )
If X is a vector-valued random variable with components X, ..., X,
(which are of course random variables), the matrix
\ [EC = Ex)x, = Ex)| = E(X-EX)(x'- EX'")

(1#5) ]

If, furth
: (t+5) J

(42)

cov X

is called the

nd facts about probability and random processcs. |

A random process may be specified explicitly by stating the
probability of simultancous occurrence of any finite number of _
events of the type
X)) SEL LX) SEL (L # . # L)ie

P"I(""“IJ S :I' """'(".rr) s E.n}l :F.ﬂhl_ :lm[‘::I' "“iﬂ}

(43)

. is called the joint probability distribution
... x(t,). The joint

“where F,,
function of the random vanables x(f).
probability density function is then

{ fm i _m’.:{i.l' S E"me. y l[f./g‘:l' oany § N

¢ tequired derivatives exist. The expected value
...x(t,)] of any nonrandom function of n random varia-
fold integral analogous to (40).

provid
Egl\‘(h beis
bles is defined by an -
A random process i8 independent if for any finite £, # ... # Ty
(43) is equal to the product of the first-order distributions —

Prixtt) SE,] ... Prix(t) <&,

If a set of random variables is independent. then they are n_hvi-
ously alsouneorrelated. The converse is not true in gcncr;ltl.lFor a
st of more than 2 random variables to be independent. it is not
sufficient that any pair of random variables be independent.

s of interest to consider the probability distribu-

tion of a random variable x(1, , ) of a random process given the
actual values (1)), ... &(#,) with which the random variables

x(1)). o0 x(h,) have oceurred. This is denoted by

Frequently it i

Pri(ty s 1) S G s bt(t) =Eps e x(6) = 8l

‘ ) I_‘:ﬂf‘u, ; I‘“ﬂ.',(é’, ..v.-f,:-r)din-l (4
'I f:(r.]. .m.J(GP """ ) -.l

AT L o A ’ v . .
which is called the ‘eonditional probability distribution Sfunction
of x(t,, ) given x(t)). ... x(s). The condirional expeciation

| Efglx(ty . D) oes X0}

is defined analogously to (40). The conditional expectation is a
random variable; it follows that

EIE{glx(t,. DIx(ty), ..o x(t)H = E{glx(t, s )}

Inall cases of interest in this paper, integrals of the type (40) or
(44) need never be evaluated explicitly, only the concept of the
expected value is needed.

A random Variable x.is\gaussian (or normally distributed) if
- 3 1 (E-En°| N
| fE)= = - -
| [2nE(x - Ex)|? 2 E(x-E07]

which is the well-known bell-shaped curve. Similarly, a random
 gaussian if. : ? 7

1 |
| £B) = exp[ —— (- Ex)’C'(E - EX) :‘ .
! ] (2m)"(der C)'2 2

where G- is the inverse of the covariance matrix (42) of X. A
tdefined similarly.

The importance of gaussian random variables and processes Is
largely duc to the following facts:

Ee.

(B) Orthogonal gaussian random variables are independent.

(C) %\;ﬂ any random process with “means~ £x(1) ane
ovariances. EX(f)x(s),there exists a unique gaussian random
process with the same means and covariances.
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Explanation of this transcription, John Lukesh, 20 January 2002.

Using a photo copy of R. E. Kalman's 1960 paper from an
original of the ASME “Journal of Basic Engineering”, Mnrqh
1960 issue, T did my best to make an accurate version of this
rather significant piece. in an up-to-date computer file format. For
this T was able 1o choose page formatting and type font spacings
that resulted in a document that is a close match to the original.
(All pages start and stop at about the same point. for example:
even most individual lines of text do.) I used a recent version of
Word for Windows and a recent Hewlett Packard scanner with
OCR (optical character recognition) software. The OCR software
is very good on plain text, even distinguishing between italic
versus regular characters quite reliably, but it does not do well
with subscripts. superscripts, and special fonts, which were quite
prevalent in the original paper. And I found there was no point in
trying to work from the OCR results for equations. A lot of
manual labor was involved.

Since 1 wanted to make a faithful reproduction of the original, 1
did not make any changes to correct (what | believed were)
mistakes in it. For cxample. equation (32) has a P*(nM(r)
product that should be reversed, I think. T left this, and some
other things that | thought were mistakes in the original, as is. (I
didn’t find very many other problems with the original.) There
may, of course, be problems with my transcription. The plain text
OCR results, which didn't require much editing, are pretty
accurate I think. But the subscripts ete and the equations which |
copied essentially manually, are suspect. I've reviewed the
resulting document quite carefully, several times finding mistakes
in what I did each time. The last time there were five, four
cosmetic and one fairly inconsequential. There are probably
more. | would be very pleased to know about it if any reader of
this finds some of them; jlukesh@deltanet.com:



