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We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
imet and the desired output vector. As a result of the weight
adjustments, internal ‘hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from earlier, simpler methods such as
the perceptron-convergence procedure'.

There have been many atlempts to design self-organizing
neural networks. The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specified by giving the
desired state vector of the output units for each state vector of
the input units, If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®. Learning becomes more interesting but

{have thei

more difficult when we introducelhidden un_igsjwhose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers” between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The leamning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
appropriate internal representations. >

The simplest form of the learning procedure is for layered ?
networks which have a layer of input units at the bottom; any  ~
number of intermediate layers; and a layer of output units at *
the top. Connections within a layer or from higher to lower .
layers are forbidden, but connections can skip intermediate St/ .
layers. An input vector is presented to the network by setting EOPINEE =
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
_ ates set in parallel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined

The total input, x,, to unit is a linear function of the outputs,
y,, of the units that are connected to j and of the weights, wy, oCE I 108
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Units can be given biases by introducing an extra input 1o each
unit which always has a value of 1. The weight on this extra —
input is called the bias and is equivalent to a threshold of the P‘ s
opposite sign. It can be treated just like the other weights.

A unit has a real-valued output, y;,, which is a non-linear
function of its total input

P‘-‘O"J LINEAR

(2) \p’\r"’a’ll-"f\ﬁ"w
FupceTl o

e

1
\y‘ 1+e ™

dence should be add d

1 To whom corresp



Wi J- 0.3.0
-~ | '
- B

ConTunU T\(
NEZESITY
x
pCTIMZNTON

ek duak L0 S BT R (-

(

Oultput unil

14.2 W =14.2
Nt
3.0 7\ 36
L4
1.2 ¥ ! =7.1
nlddcn\{q | -— }_"/_ —_— -1 |L)4ndln
it A -7.2 r—\ 7.1 A\ unit
/
3.6 Vi ~3.6
/
=14.2 _/—\ 14.2
./
Inpul unils

Fig. 1 A network that has learned to detect mirror symmetry in
the input vector. The numbers on the arcs are weights and the
numbers inside the nodes are biases. The leaming required 1,425
sweeps through the set of 64 possible inpul vectors, with the weights
being adjusted on the basis of the accumulated gradient ul’kci cach

.3[“"“ The values of the parameters in equation (9) wer

an 09, The initial weights were random and were uniformly
— distributed between —0.3 and 0.3. The key property of this solution
is that for a given hidden unit, weights that are symmetric about
the middle of the input vector are equal in magnitude and opposite
in sign. So if 2 symmetrical pattern is presented, both hidden units
will receive a net input of 0 from the input units, and, because the
hidden units have a negative bias, both will be off. In this case the
output unit, having a positive bias, will be on Note that the weights
on each side of the midpoint are in the ratio 1:2:4, This ensures
that each of the eight patterns that can occur above the midpoint
sends a unique activation sum (o each hidden unit, so the cml_y
pattern below the midpoint that can exactly balance this sum is
the symmetrical one. Forall non-symmetrical patterns, both hidden
units will receive non-zero activations from the input units. The

two hidden units have identical af w but_with
opposite signs, 5 dden unit.

[t is not necessary to use exactly the functions given in equations

d (2). Any input-output function which has
Ve will do. However, the use of a linear function for
ining the inputs to a unit before applying the nonlinearity
greatly simplifies the learning procedure.

The aim is to find a set of weights that ensure that for each
input vector the output vector praduced by the: network is the
same as (or sufficiently close to) the desired output vector. If
there is a fixed, finite set of input-output cases, the total error
in the performance of the network with a particular set of weights
can be computed by comparing the actual and desired output
vectors for every case. The total error, E, is defined as
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where ¢ is an index over cases (input-output pairs), j is an
index over output units, y is the actual state of an output unit
and d is its desired state. To minimize E by gradient descent
itis necessary to compute the partial derivativeof-E-with respect
to each weight in the network. This is simply the sum of the
partial derivatives for each of the input-output cases. For a

given case, the partial derivatives of the errar.with- respect to
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Fig. 2 Two lsomorphic family trees The 1nfoqmt!.on can
er.lpmud as a set of triples of the I'ole (wm
, where the possible relationships are {father, M ther,
hutband, wife, son, daughter, uncle, aunt, brother, sister, nephew,
nicce] A layered net can be said to ‘know’ these triples if it :;n
produce thé third term of each triple when given the firse two. The
frst two terms are encoded by activating (wo q!" the inpm_ units,
and the network must then complete the proposition by activating

the output unit that represents the third term
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Activity levels in a five-layer network after it has IcamFd.
The bottom layer has 24 input units on the left for representing
(person 1) and 12 input units on the right for representing the
relationship. The white squares inside these two groups show the
activity levels of the units. There is one active unit in the first group
representing Colin and one in the second group representing the
relationship ‘has-aunt’. Each of the two input groups is totally
connected to its own group of 6 units in the second layér. These
‘groups leam to encode people ‘and relationships as distributed

| patterns of activity. The second layer is totally connected to the
central layer of 12 units, and these are connected to the penultimate
layer of 6 units. The activity in the penultimate layer must activate
the correct output units, each of which stands for a particular
(person 2). In this case, there are two correct answers (marked by
black dats) because Colin has two aunts Both the input units and
the output units are laid out spatially with the English people in

one row and the isomorphic lialians immediately below.

Fig. 3
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The backward pass starts by computing dE/ay for each of
the output units. Differentiating equation (3) for a particular
case, ¢, and suppressing the index ¢ gives FIRST
: B —— s — "\ GRACENT

3E/oy;=y — 4 (4}&:1 APYATION
We can then apply the chain rule to compute JE /a3 '
pp!________r_“_er—n—-—c?'—" u cbg,{;?:&.r‘r.gd ofF
AETIVATIOD l dE[/ax;=aE/ay, dy)/dx; | oAl RuLES

Differentiating equation (2) to get the value of dy;/dx; and

substituting gives - DERI ke

9E/ax,=3E[ay; y(1—y)) (5) l _:’;
This means that we know how a change in the total input x to 35’
an output unit will affect the error. But this total input is just 2 )
linear function of the states of the lower level units and it is
also a linear function of the weights on the connections, 50 it
is"éasy to compute how the error will be affected by changing
these states and weights. For a weight wy, from i to jthe
derivative is

PEFRN
aE/awy =aE/ax; ax;[awy oF
=aE/sx; y, ® \ 2E

and for the output of the i unit the contribution to 3E/ay, Jus; |
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;“h"i::?:hl;:‘h generation a person belongs to, and unit 6 encodes
gt nch of the family they come from. The features captured

¥ the hidden units are not a1 all explicit in the input and output
the 3o these use a separate unit for each person. Because

¢ hidden features capture the underlying structure of the task
domain, the ne

whiich & twork generalizes correctly to the four 1rip§lt'.s gi
e ILWas not trained, We irai e network fo
%ﬂﬁﬂmﬁ’a@é for the first 20 sweeps m d

 for the remaining sweeps. To make it easier to interpret
the weights we introduced ‘weight-decay' by decrementing every

encodings, since

weight by 0 2% after cach weight change. After prolonged learning,

the decay was balanced by 8 /aw, so the final magnitude of each

weight indicates its usefulness in reducing the error. To prevent

the network needing large weights to drive the outputs to 1 or 0,

the error was considered 1o be zero i output units that should be

on had activities above 0.8 and output units that should be off had
activities below 02.
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RGLDFM Fig. 5 A synchronous iterative net that is run for three iterations
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and the equivalent ach time-step in the recurrent net
corresponds to a layer in the layered net. The learning procedure
for layered nets can be mapped into a leaming procedure for
iterative nets. Two complications arise in performing this mapping:

 first, in‘ﬂqu:ml'-mwwihﬁuﬁmmein'taﬁneﬂitt-

g the forward pass
sec equations (5)

e required for performing the:
and (6)) So in an iterative net
of oulput stites of euch uui.

is properiy, we averag
ghts in each set of corresponding weights and then change each
weight inthe set by an amount proportional to this average gradient,
With these two provisos, the learning procedure can be applied
directly to iterative nets. These nets can then either learn 1o perform
iterative searches or learn sequential structures®
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We have now seen how to compute aE/ay for any unit in the
penuitimate layer when given g E/ay for all unigom the |3_§‘
layer. We can therefore repeat this procedure to'compute this
[erm for successively earlier layers, computing JE/aw for the
weights as we go.
One way of using aE/aw is to change the weights after every
input-output case. This has the advantage that no separate
memory is required for the derivatives. An alternative scheme
which we used in the research rej 1CCL

d in orted here, is to i
: ?@!}.z_tﬁe‘ﬂﬁju. 11

ei ‘simplest version of gradient descent is to change
each weight by an amount proportional to the accumulated ‘wr-,:‘ur
aE/aw PR L;PDKTE

l Aw=—gdE/aw (8)

This method does not converge as rapidly as methods which

make use of the second derivatives, but it is much simpler and

can easily be implemented by local computations in parallel

hardware. It can be significantly improved, without sacrificing

the simplicity and locality, by using an acceleration method in "
which the current gradient is used to'modify the velacity of the PL-,:E*—'EE‘G
point in weight space instead of its position i 0__'%0‘9.)7

Aw(t)=—gdE/aw(r)+adw(t—1) (9]Jp(-,m€

where [ is incremented by 1 for each sweep through the whole J
set of input-output cases, and « is an exponential decay factor _ =~ DECA]
between 0 and 1 that determines the relative contribution of the * - FAC 1A
current gradient and earlier gradients to the weight change.

To break symmetry we start with small random weights.
Variants on the learning procedure have been discovered
independently by David Parker (personal communication) and
by Yann Le Cun’.

_ One simple task that cannot be done by just connecting the cYMMETRY
input units to the output units is the nmetry. To '
detect whether the binary activity levels of a one-dimensional

array of input units are symmetrical about the centre point, it
is essential to use an intermediate layer because the activity in
an individual input unit, considered alone, provides no evidence ; ) TE RS EPWTE
about the symmetry or non-symmetry of the whole input vector, yrnTS
so simply adding up the evidence from the individual input
units is insufficient. (A more formal proof that intermediate
units are required is given in ref. 2.) The learning procedure
discovered an elegant solution using just two intermediate units, !
as shown in Fig. 1. S e
Another interesting task is to store the information in the two Re2EPTI| E
family trees (Fig. 2). Figure 3 shows the network we used, and IELDS
Fig. 4 shows thel'receptive fields!, of some of the hidden units
alter the network was trained on 100 of the 104 possible triples.
So far, we have only dealt with layered, feed-forward
networks. The equivalence between layered networks and recur-
rent networks that are run iteratively is shown in Fig.5
_The most obvious drawback of the learning procedure is that
‘the ‘.Egﬂe{'-' or-surface may contain. local minima so that gradient
ﬁa%q:e_ng‘_s not guaranteed to find a global minimum. However,
‘experience with many tasks shows that the network very rarely
gets stuck in poor local minima that are significantly worse than
the global minimum. We have only encountered this undesirdble
behaviour in networks that have just enough connections to MORE
perform the task. Adding a few more connections creates extra ETIONS
dimensions in weight-space and these dimensions provide paths CANNETETS
‘around the barriers that create poor local minima in the lower
dimensional subspaces.

Loent
JAPIMAC




26

NATURE VOL. 12) 9 OCTOBER 1986
LETTERSTONATURE
The learning procedure, in its current form, is not a plausible
model of learning in brains. However, applying the procedure
to various tasks shows Ehal interesting internal representations
can be constructed by[gradient descent in weight-space; and
this suggests that it is worth looking for more biologically
plausible ways of doing gradient descent in neural networks
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