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merous experimental works have demon-
strated its capabilities, a deeper theoreti-
cal understanding of the algorithm is defi-
nitely needed. We present a mathematical

Pineda [Pineda, 1987].

Other easily described variations mvolve
either addmonal terms in the fer
faints on the set of
solutnons or trmforma.t:ons of the param-
eter space. A.n mterest.mg kind of con-

{//' e

The Back Propagation algorithm has recently
emerged as one of the most efficient learning
procedures for multi-layer networks of neuron-like
units. One of the reasons of the success of back-

ferent contexts [Parker, 1985) [Werbos, 1974]

The present paper proposes a derivation of back-
propagation based on the Lagrangian formalism.
An early version of this framework has been pre-
sented in [Fogelman-Soulié et al., 1986] (also pub-
lished in [Fogelman-Soulié et al., 1987]) and a more
extended version in [le Cun, 1987).

This formalism 1s directly inspired by optimal

Voo

Abstract prior knowledge into the network whilere- ) (OF
ing the number of free parameters. = T
& Among all the supervised learning algo- dci P NEED 10
- 3 ; . SISIDEE
P rithms, back propagation (BP) is proba- . Ct T rosbi TIPS
bly the most wi(l)dely used. Although nu- 1 Introduction KicT-cov

control theory. There is an abundant hterature on Dl e RETE
; : opt:ma.l cont.rol that uses the met.hod of Lag Ve
%to appear in “Proceedings of the 1988 connection- o % . : S5 AHLTINVEUS

: 15t models summer school, Carnegie-Mellon Umveuil.y
] D Touretzky, G. B'.inbon, T. Sejnowski (eds), Morgan
: Kaufmann 1989,

method is csiled variational calculus, and its pur- OPTIMIZATI
® Authors present address: Room 4G-332, AT&T Bell
Laboratories, Crawfords Corner Rd, Holmdel, NJ 07733

_pose 18 to find a function (usually not a a set of dis-
crete values) tha
. Variational calculus and its
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extensions are, in fact, the basis of most work in op-
timal control [Noton, 1965; Athans and Falb, 1966;
Bryson and Ho, 1969]. As we will see, the classical
algorithms given by this formalism closely resemble

RIMTTO
Wy s _,.;Kback-propagation :

l? ONC
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The central problem that back-propagation solves
1s the evaluation offtiefinfluenc
a function whose computat
‘mentary steps. The solution
by the chain rule, but back-propagation exploits the
particular form of the functions used at each step (or
layer) to provide an elegant and local procedure.

We show below that this problem can be easily
stated using variational principles.

One of the questions addressed by optimal control
theory 1 how the state of a system at time 7" will be
modified by a change in the control variables at time
T — 1. In discrete time, this problem is very similar
to the problem of back-propagation if we replace the
time index by a layer index, namely, how the output
of a network (state of the K** layer) will be modified
by changing a weight in layer K — k. The'Zrajectory
in the classical paradigm is analogous to the states
of the successive layers in the network.

In the continuous time case, there 1s an even more
straightforward analogy between the standard opti-
mal control formalism and continuous time recur-
rent networks like the one proposed by Almeida
[Almeida, 1987] and by Pineda [Pineda, 1987].

The purpose of computing partial derivatives of
the states with respect to the parameters in the sys-
tem is to minirmze an objective function which mea-

“sures how far the behaviour of the network is from
a desired behaviour.

Following the variational formalism of Lagrange,
sPontryagin has shown in the late 1950’s how to
formulate this problem using a single energy-like
Harmltonian function. The behaviour of the system
1s completely described by a single equation stating
that the Hamiltonian meets some optimality ‘crite-
rion. An extensive treatment of Pontryagin’s mini-
mum principle can be found in [Athans and Falb,
1966]. The Pontryagin principle is an extension
of classical variational calculus to problems involv-
ng mon-differentiable functions, especially when in-
equality constraints must be met by the state van-
ables or by the cont; . It 1s closely related
to [ and, in fact,

1t can be derived as a limt case of it (see [Noton,
1065] for:example). For the problem-of simple feed-

. t,op‘u'ko;_ ' :welo-rf’_( S
YARINBLES * T T
GO e
. P _p_E,’-P-FOw :

- ADEX

ion involves several ele-

forward multi-layer networks, the full generality t?f
Pontryagin’s result, even of variational calculus._ls
not needed. Only the standard Lagrange multiplier
method will be used.

Some of the applications and algorithms de-
scribed in the optimal control literature so closel’y
resemble back-propagation that one could credit
Pontryagin (among others) for its discovery. Al-
though the relevance of this work to automatic ma-
chine learning is not clearly mentioned in the ea_rly
literature, the results have been extensively applied
to some closely related problems such as system
identification. Most of the optimal control literature
deals with continuous time dynamical systems, how-
ever the proliferation of digital computers has lead
to discrete time versions of the methods. The use of
back-propagated variables for computing del‘ivat.iv‘es
is apparent in the classical literature, and, as we will
see, is a direct consequence of the formalism. In op-
timal cont.rol,m;g,; c-propagate uattor mca.lled
the co-s state corresponding
acky oirit system [Athans and

Falb, 1966].

Since his first work on the subject, the author
has found that A. Bryson and Y.-C. Ho [Bryson
and Ho, 1969] have described the back-propagation
algorithm using Lagrange formalism. Although
their description was of course in the framework
of optimal control, not machine learning, the re-
sulting procedure 1s identical to back-propagation.
They formulate it as thelthe optimal control so-
lution of a “multistage system” defined as a cas-
cade of elementary systems f°, f!, f¥ (analogous
to the layers) controlled by a set of control variables
u(0), u(1), u(N — 1) (analogous to the weights) and
minimizing a performance mdex which depends on
the final output . No strong assumption is made
about the dependency relation between the control
variables and the states. The derivation includes the
expression of the back-propagated gradients and the
authors suggest the use of a gradient descent tech-
nique to find the control that optimizes the perfor-

te pr ,'and they are sometimes rather dif-
ficult to solve, even with a high speed computer.”
[Bryson and Ho, 1969]. To the author’s knowledge,
this is the first description of back-propagation as

their performance index also includes terms which

depend on the state and the control at every stage
T LNEFRS
—

Co-3TATE
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=~ T

ADTON
SYSTEM

—

mance index. The section is judiciously concluded
by: “Such problems are called
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we know it, although the idea of back-propagating
oy d‘erwa.tw&a is much older, especially for continuous
. ,:5 time systems [Athans and Falb, 1966; Noton, 1965].

. Although the theoretical foundation of back-

-
3

4

& K

propagation and its first use in optimal control is
old, the (independant) discovery of its relevance to
connectionist systems and its interpretation in this
contexl are recent.

2 Deriving BP using the
Hamiltonian/Lagrangian
formalism

2.1 Notations

For the sake of clarity, we will introduce the formal-
ism in a simple case. A more general formulation
will be presented afterwards. It will be assumed that
the network is composed of 4 number of layers con-
nected 1n 4 feed-forward manner. Furthermore, we
make the assumption that [€onfiections cannot skip
layers. These assumptions can be easily relaxed [le
Cun, 1987].

We use the following notation. The layers are in-
dexed from 0 to N. Layer 0 is the input layer and
layer N is the output layer. The state of layer & for
pattern p is denoted X,(k), and the global state of
the network for pattern p is denoted by Xp. Xp 18
simply composed of all the X, (k)’s concatenated to-
gether. We denote by X the vector composed of all
,ugcnaovthe X, concatenated together forp=1...P. Layer

D\SIUMETION S

fo(n\)

3 s:p? k — 1 is connected to layer k through a connection
ARTTT - matrix W(k). The vector of total input to units in
layer k (weighted sums) is denoted Ap(k), its value
is given by:
VELTOR oF —————— J}
eeD | Ap(k) = Wk Xk — 1)
M e i N
The equation of forward propagation is simply:
STATE oF b v
i on | Kpl) = FOR Xk = 1) =
‘I_.;\_r‘—l'-{_'_:[z\_l_'\) Pt

Fi(Ay(k)) Vk € [1,N]

;~QL,.JT“C‘Q TipM
ORE S g oPArh
Xp(0) 1s defined to be the external input vector .
F; denotes the non-linear transformation associated
with layer k. The components of Fi will typically
be sigmoid functions.
The vector of desired outputs 1s noted D,;"n.nd has
the same dimension as the ouput layer X,(N)

FoRwWARD
L‘eﬂb.‘ a“: '"!l N’g .

PRoPAEKTION

’Y = {'Y, ,A"a, 2 -;XF—S

o

_Z (w, K_,’,Rp\ = (iJ (Xp(N))+

N

' T

S B [Xal)F

K=l

2.2 BP as a constrained
minimization problem

In this section, we show that back-propagation can

be view as a constrained minimization problem in-

volving not only the weights W, but also the state

of the network X as the problem variables. The La'.- e

grange function ? corresponding to the problem is 5TRyCTVR=

the sum an objective function (usually t.he_ squared

output error) and a constraint term multlplggg_.hy

Lagrangemultipliers denoted By (k). Th%i:mﬁ

term describes thelstructure of the network, i.e. the

dependency relations among the X(i). The La-

grange function (LF) for a single pattern p (called

local Iﬁg_an_ge\ﬁltl_c:tjon] has thf:_folloﬂng form

e — Ir‘-_‘-) 'p\-_ i
Lp(W, Xp» BP) =C(Xp (N)+ FupeTIoN A
N A SiNFLE
3 By (k)T (X, (k) = FIW(R)Xp(k — 1)) | PATTERY
and the full LF for the current pattern ensemble is:
__—p ' = ToTAL B
LAGRANGE
B B = Z LP(W' XP'BP) \Fu:\lke:nou
e — :

where P is the number of training examples. If the
objective function C is defined to be the squared
output error, the local LF becomes: ;

L,(W, X, B) = (Dy = Xp(N))T(Dp — Xp(N))+

LAGRA NGt
W TH CHEME
FuNETION of

= r:{b ARED

N
kTXPk—FWkXPk—l 1
3= B8 () - W, =) () (S0

k=1 T R S
As stated above, L 1s the sum of two terms. The
first term is just the squared output error, i.e the
square norm of the difference between the desired
output Dp and the actual output Xp(N). In the
general case, the objective function need not have
this form, and it can incorporate other terms de-
pending on any state variables, weights, etc ..,
anywhere in the network. The second term is the
sum of N terms, one for each layer, which are in-
terpreted as constraints. If the constraints are met,
all these terms are zero. Each term is the dot prod-
uct of a Lagrange multiplier vector B(k).and\a con-.

!straint term. When the constraint is fulfilled, the

constraint term is zero, yielding: co NSTSTRAINT
| X(k)= FW(R)X(k—1)] Vk€[1,N] EFUFIL“"EW

?the Lagrange function described here has no relation
with the Lagrangian as defined by physicists
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by V‘fe recognize the forward propagation equation

ﬂ' given in the previous section. Thus, the constraint

> term just defines the network forward dynamics, i.e.
the dependencies between X and W, and among the

" X(k)’s. As it will be shown later, the Lagrange mul-

tipliers B take account of the backward dynamics.
Again, the forward dynamics equation does not need
to have this particular form, it could be any differ-
entiable function of X, W, and eventually k. The
prolblem is to find a sequence W (1), W(2)... W(N)
?vhlch minimizes the objective function C while sat-
isfying the constraints. It is easy to show [Bryson
El:i Ho, 1969] that

Seac MiN el |
FoR VL(W,X,_B):O 1
is a necessary condition which defines a local mini-
mum of the performance function C with respect to
the weights while meeting the constraints . This
single equation totally describes the behaviour of
the network. The condition can be split into three
subconditions:

SNDITIONS Fog

Forw ALY

| OL(W,X,B) _

LocAL M {NIMUM 5B 0 ass (2)
of FTERH}RP{\A ?‘)‘CF: aL(W, X‘B) BackEWA R

FUNGTION | =25 —=0pas=z (3
‘ dL(W, X, B) seTMAL TY

aw =V comnimintd (4)

Each of these conditions can be further decomposed

mnto N conditions corresponding to each layer.
Each subcondition, when developed, yields one
of the three passes of back-propagation . The first
1 subcondition gives the forward propagation pass,
the second one gives the backward propagation pass
(the gradients). The third subcondition does not
give a direct way to compute W but 1t does give the
optimality condition that must be fulfilled.

2.2.1 The first subcondition

Equation 2 can be decomposed into N times P
elementary conditions

DECAMPI S TION L X B ki e TR |
aF FoRwWARD [ B_(M =0 Vk,pell, N[, p]L
PASS rf‘]'_q..s‘:"'ri:'lﬂ aBp(k) el

wﬂfi‘*’,"‘%\ ~
ERUVIVAL —

8L(W,X,B) _ OL,(W,X,,B,)

pug To Vk,pe [l N]1,P
e OBy(h) 9B, (k) ? € [L VL. \1
since for any local LF L, ¢ # p does not depend on
B,
3the sufficient condition also states that the Hessian
of I with respect to W must be positive semui-definite
=T e

' M Bo(NY=2[Dp %)

4
Far EfN ;Bfmtw"’(td\vampfkﬂ)\B?(m\

Lo

___The condition simply yields _ _—
| %0 = RWX,( = 1) Yep €01,M1, P

» BounnaRY

/X/q ‘ — (ONDIT P tJ

4 EQuRITIAL
\r,‘.-a MSTERMNT

which is the forward dynamics equation.

2.2.2 The second condition

Equation 3 will be also decomposed into N times
P subconditions, but the condition corresponding to
the last layer (k = N) will be of a different nature.

T )
pECHMFPOTION of
= we _hav =
For k N _‘_l_'l_ﬂ e | gackt IARD PASS

OL,(W. X, By) .~ . -~
Zep\Wasps Tp) o 0 Wpel, P 580 i TIO R
i 6X,(N)____________pj[__]__«\-n s

=N
and for k € [1, N — 1] we have i DEMMMSTIED

8L, (W, X,, By) FoR) -
T 2p %) — 0 Vk,pe[l,N-1[1,P > =
aX, (k) €l I ]\ ke[ ,N-|

Note that there is no condition on X|(0) since X (0)
is the input vector. It is not considered as a variable
of the system but rather as a(boundary ¢ondition.
The first subcondition (for k = N) immediately |
gives a boundary condition on B, i.e. the value of

B.L’ OB R 1:

B(N) — =\ TN
I By(N) = 2(Dp — X,(N)) s (5) ’?"fa;”)

When k is different from N, the subcondition 17
gives wZzN

SN -
By(k) = WT (k + 1)V F(Ap (k + 1))B,(k + 1) (6)_\ f«i:p,ru
n

1s equation, the term TACoRIAN

I VF&(Ak(km ,V'&ATFlI/'l‘
is the Jacobian matrix of F; at point Ap(k+1). For
a standard back-propagation network, this matrix

will be diagonal and its i** diagonal term will be
given by

= JACCBIAN of=
IVFk(Ap(k + D) = f'(ap(k + 1)) =
where f is thelsigmoid function and a,,(k + 1) the
i** component of A, (k + 1),
We can simplify the notation by transforming
equations 5 and 6 through the following change of
variable TACOBGIAN oF
: AcTIVATION 10/ ERROR
en transformed into

Yp(k) = VFy(Ap(k))By(k)
The two equations are

——
(V) = 2V Fn(4(N))(D, - Xp(N)) (1) | e
Yp(k) = VF(Ap(k))WT (k + 1)Y,(k + 1) CQUATIMS

Vk€[0,n—1] (8)
As is now apparent, these equations describe the
backward dynamics. Equation 7 is a boundary con-
dition on the gradient variables Y while equation 8

= GUTPYT LAVER
\f”[“) T BwnoARY  Lonpmion

(E P BreEPROFPALATED
P BunDARY  conpTION



be recognized as the b
optimal control theor
function and algg call
adjoint state. T
is called the adjo

Y, B(k) is called thesnfluence
ed costate of the system, or the
rpo%%ing backward system

item [Athans and Falb, 1966].

2.2.3 The third condition

'I_‘he third condition, unfortunately,
a.d'trect method for computing W, but
dlltlon that W should satisfy. As usu
gives N subconditions

oPMMALTY

does not give
it gives a con-
al, equation 4

CONOITIdN) %:0 Vk € [1,N] \
vielding e
i a
e | 2 VEU(A(K)B,(K)XT(k—1)=0 Ve [LN]
AT sk . ——

we can apply the same change of variable as previ-
ously, substituting Y for B

SMPLF CATY &)
e
2
WY

P

Yo(K)XT(k—1)=0 Yk € [1,N]
=1

this condition states that/W is a stationary point
[6f L ie a local minimum, maximum, or a saddle
point. Qur problem is, of course, to find a minimum
of the output cost function with respect to W, and
this can be shown to be equivalent to finding a min-
imum of L while satisfying the first two subcondi-
tions. The easiest and most common method to do
so is the method of steepest descent. As stated be-
fore, the problem to be solved is a two point bound-
ary value problem, for which no magical solution
exists. A steepest descent procedure has the follow-

ing form
.-:\'J-':f"\?":.?“lT
DESCcENT

VPRATE

. OL(W,X,B)
W(k) — W(k) — I\W

Tl ARy

where A is the step size. After algebraic refinement,

this equation gives
T

< EaroED

GRADIEW T
DEYEWT
UPCATE

P
\ W(k) — W(k)+ 2D Yo (k) X7 (k—1) (9)
p=1

We recognize the usual welg-_ht- update formula of the
classical back-propagation algorithm.

- STEP
- S'2E

e _l-’;

|

2.2.4 Summary of the results

The combined results are summarized by these
three equations which are respectively the forward
pass, the backward pass and the weight updates

ach 202 SOC Weigak Upaal

Xp(k) = RW(K)X,(k=1)]  Vk,pe [1,N][1, P] | 50MMAEY

Yok) = VE(A(R)WT(k+ DYp(k+1) (25
Vk,p € [0,n—1](1, P] BN
P
W(k) — W(k)+2 Y Y (k)XT(k=1) Vk € [1,N]
e Pmh - o
with the two boundary conditions -
—_— . Ray oA
X}w)‘I} )mh”ym!ﬁ
Yp(N)=2VFn(Ap(N)) (Dp - XP(E)_)_
This is exactly the back-propagation algorithm.
There are several related ways to derive this result,
for example, Bryson and Ho [Bryson and Ho, 1969]
define a Hamiltonian function = RACKPROPAGRTIEN

—_— - -

‘ | Hp(k) = By(k)T FW(K)Xp(k = 1)] |y p a0
and point out the relations between this quantity
and the classical Hamiltonian of a physical system.

It should be emphasized that the formalism can
be easily modified to incorporate connections that
can [skip layers, recurrent networks, Wweight decay,
and other extensions [le Cun, 1987].

3 A few extensions

Several generalizations and extensions of this for-
malism can be devised, which concern iterative net-
works, networks with equality constraints between
weights...[le Cun, 1987]. Still others can be inspired
by the optimal control literature.

Some particularly interesting variations will be
described here.

3.1 Transforming the parameter
space

Back-propagation is often considered as a search for
a minimum of thécest function in weight space, how-
ever, in some cases it is interesting to consider the
weights not as elementary variables, but as func-
tions which depend on a set of elementary variables
U. A good example 1s when the designer wants to
put a priort knowledge about the task into the net-
work. For example, equality ‘constraints between..,
Weights' can/ be: enforced : the networlk re-
'sponse invariant under cert Ansformations, of

X \

ﬂsm WEIGHTS

? AS FoneTioNs



the input vector.

‘ Anot, ;
weight space is ill-congitiene L * When the

conditioned or too complicated

dimensional vector {.

becomes:

Ly (U, Xp,Bp) = C(Xp(N))+
N
2 B (T (X, (K) = FIw (U, k)X, & - 1)
=1

- L - the oo—————— G
The network obeys the same optimality condition
as 1n the previous sectjon:

AP AT - ———
WniMmALITY VL(U.X,B):O

ConNDLTIg
A treatment similar to the previous section can be
fieveloped, except for the third subcondition which

function

LAGRANGIAR
for

WeE) gl
FureTieN

—L e — 1

SPTUMALTY CONDITeN 57 UX,B

Fan WeIGHT fiened —‘(—'5-U——)- =0 (10))

After refinement, thi;E_ﬁT:'a'ﬁﬁ?i_elds_:__ )
UPDATE | w A S OL du,(k)
RULE FoR 0 & dwy,y (k) B,
WEIFHT o
FuUNeTIa N Ow,, (k
Uy —ug+ A Z un(k)z,(k —1) -—5‘;-5—)
1k

The summation over three indices i,j and k can be
time-consuming if an u, influences many w,, (k), but
in practice the interactions between u’s and w’s will
be local.
An interesting special case is whe veral weights
{share a single parameter u; this provides a way
of implementing equality constraints between the
weights with very little overhead. The derivative
with respect to a particular u is simply the sum of
the derivatives with respect to the w’s that share it.
\This particular kind. of equality-conist n- be
used to describe;“time unfolded” iterat
 described i [Rumelhart et al., 1986].

3.2x

‘Continuous time recurrent
- networks g
Almeida and Pineda [Almeida; 1987] [Pineda; 1987]
recently described a model of a recurrent back-"
propagation metwork governed by continuous time:
differential equations of the form:

BARN N "lﬁ ?F%(¢)= :E(Wx(t))—«‘f'('d

6

Where r; is a time constant. It should be empha-
sized that the following calculations can be per-
formed with a more general equations where F is
not a function of the product WX, but a function
of W and X separately. Also, 7, could be a positive
definite diagonal matrix instead of a scalar.

Pineda and Almeida have shown that when the
system has reached a fixed po
compute the vatiy hi

int, it i

Y

of derivatives is
point of another differential

ect to the 8. This vector
identified as the fixed
equation.

We will show that his result can be obtained ex-
tremely easily using variational principles.

A fixed point of the system is characterized by

dx " DCFI:M"{: [.!.l\"‘J_}J"F
— = >1 N
dt _Ff iz
which is equivalent to
E xPapine OF

Ei_ FWX)=0 | »x

We define the Hamiltonian H of the system as the
sum of the objective function C which depends on
the state X, and of a constraint term characterizing
a fixed point:

] H = C(X) + BT[X — F(WX)] \

where B memﬁned Lagrange mul-
tipliers. The question is now: what is the deriva-
tive of C with respect to W while stagng at a fized
pownt? In other words, what is the variation of &
caused by a variation of W while maintaining con-
straint satisfaction? The variation of H correspond-
ing to a variation of W is given by:
8H oH

6H = 376}{ + =W

where 6X is the variation of X caused by the vari-
ation of W. This equation becomes 4
e ————

o = (32 + 572 XS XDysx

(WX))
—=—ysw

HAMILTOSAN
FarR Rwwe

VARIATION 1N
HAMILTOW (AN

ExPAMSIo N
OE VARIATION

(N H ARILTOUIARS

ac 79(X —
Gw +8 2
now, it 1s cult to compute iation of X,
denoted bysX, caused by the variation of W, de-
noted by 6W, and in fact, we would like that the
result does not depend on §X. Sofeschoose B such™

*nc at'the derivative of a scalar fanction w.r.t a

l.mto'r‘:i;-;-'ll'n_e vector

Hmu:ronmﬁ, v5. LAGRAVGIAN
Dinavics.




that the coefficient of 6X vanishes. The Lagrange
multiplier B then should satisfy

Y ac

ConDTIOW

Since the system is assumed to be at a fixed point X,
the constraint is satisfied and the constraint term

. . . . l
(X - F(A)) - -in the Hamiltonian vanishes. Therefore, the tota
— T a A MU “: %
X ke 8xX =0 })?-E[;;g;:r,;f‘r;derivntim of H and C with respect to W are equal.
using the notation A = WX, We then o ia.i:; We obrta,u_: the main jggult: il Jo il
Y o == . . - F(WX)) o L
oC oF 2(x-Fa 25,y [ 9C _ 8C BT (X — F( Juw T dl
ax tBU-gaW)=0 |20l | Gy =aw t oW
- T r 111G/ ol & direet utiction Of %, as s usually the
,‘_?E B - WTQE B= 28 case 5, this expression reduces to dC s o (O
oxX QA._ - T =\ — ML — 7" M 154

this equation must be solved for B. Since it is a lin-
ear system, a large variety of methods can be used.
As suggested by Pineda, we can interpret the equa-
tion as characterizing the fixed point of a dynamical

system described by a differential equation of the
form
r-I\(:':D i"' \WT

DYNAMIO

dB L 9F . 9CT
Lwdt _—B+W_(_aA) B—Ff

As in the case of feedforward network, it is conve- "

nient to apply the change of
ACTIVAT M
S EpniTwITY

iable:

y={ga2|
By multiplying both sides of the previous equation
by g—i— and substituting, we obtain:

FP.neoA =1
dy oFT .. SBT
N OMEND P — — . St
L5t (’” a0 gy T =g |

This is the Pineda-Almeida equation for computing
the gradients of the fixed point with respect to the
weights. As in the feed-forward case, the Lagrange
multipliers can be interpreted as the negative gradi-
ents 5. Now that B has been computed so that the
coefficient of §X vanishes, the expression of §H is

greatly simplified:

dw ow

— e tu)
The expression of 3!'% is finally obtained .
£ UIAULATOYW @
A LU e
d_dc; = —YiZj Eepalr AND VNF >
w,, %

We are now able to apply a gradient descent proce-
‘minimize C GRAGIENT

' NDEC—=SMT
- e Rl Teiie s M

(DISCRETE )
or a continuous version of it AT
1 1 GRAPU=
| _ dw; PN T
T — T D[:—‘\f- = -
) w dt yl ] CCD‘.JT[E;"J?}J _)\

4 Conclusion

The theoretical formalism described in this paper
seems to be well suited to the description of many
different variations of back-propagation . The pa-
per only explores a few of them. Considering the
amount of available literature in optimal control
theory, it seems that we have only scratched the
{surface of the range of possible applications. The

4C _ prdX - F(WX)) Ed& ot FUNETO S

ST o | =K & method described here not only provides a clean

B i ¢y L way of deriving back-propagation like procedures,

v H;- e ow but also greatly simplifies the derivations.

W(TET  or From a historical point of view, back-propagation

J"_}f =0 6H = (ﬂ +BT (X —Ffwx)))aw had been used in the field of optimal control long
oW aw before its application to connectionist systems has

Hﬂ‘md Y) are computed as prescribed  been (independently) proposed. Nevertheless, the
above, thw interpretation of back-propagation in the context of

o e siiiply: s oeEionat sstes, s well s mos relted con-
= T - ; ts t the historical and scientific im-
‘ X — F(W cepts are recent, an istorical an ntific 1m
o ,f')ﬁ"'o- i % = 3‘?_;’:_ B"‘a 5‘;, X)) \ portance of [Rumelhart et al., 1986] should not be
_ i b : | overlooked. The concepts are new, if not the algo-

. ®note that the equations of motion that we usé for rithm.

X and B are iequiv assical nian _
equations of motion: ere f te a “weight decay”

zero

B Plays to role of the momentum in classical mechanics,

d‘?(. .{'I':.. g
F-Al
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