
WFNet: Sinusoidal Weights for Fourier

Expressibility

Noah Schliesman

Draft: 10/06/2024

Abstract

Inspired by Fourier decomposition and the potential benefits of wave-based
weights in neural networks, we propose WFNet, a neural network architecture
utilizing sinusoidal weights for digit classification on the MNIST dataset. While
standard neural networks approximate functions via hyperplane projections,
we investigate whether sinusoidal weight functions can outperform traditional
methods. Our results indicate that the accuracy plateaued at 97.4%, with no
further improvements achieved. Despite the promising theoretical framework,
gradient analysis highlighted potential limitations in training stability and learn-
ing dynamics, particularly due to the complex oscillatory nature of the weight
parameterization.

Neural Networks and Fourier Series

As neural networks serve as powerful function approximators, it is logical to
revisit the theory of Fourier series. For computational feasibility, we consider
the discrete case:

SN [n] =

∞∑
k=−∞

s[k] exp

(
i2π

k

N
n

)
(1)

where:

• SN [n] is the discrete signal,

• s[k] is the k-th Fourier component,

• n is the discrete time index,

• α = 2π k
N is the angular frequency at k,

• i is the imaginary unit.

The concept of a Fourier activation can be considered in terms of function
approximation. Ngom and Marin [1] demonstrated that Fourier networks can
be effective in modeling and solving partial differential equations (PDEs) with
periodic boundary conditions. Similarly, Uteluliyeva et al. [2] evaluated Fourier
networks and noted that they are inferior to the simpler sigmoid and ReLU
counterparts for certain tasks. More recently, Mehrabian et al. [3] utilized
a Fourier-Kolmogorov-Arnold network to provide continuous and resolution-
independent approximations, known as implicit neural representations (INRs).
Furthermore, Sitzmann et al. [4] proposed a sinusoidal activation framework

1



to represent images, wavefields, video, sound, and other data types, which can
also solve boundary problems. Clearly, extensive research encompasses func-
tional approximation and differential analysis. The notion of waves as universal
approximators holds merit and forms the basis for modern physics.

Wave Functions in Neural Networks

It may be advantageous to consider the weights in a neural network as wave
functions. Such a system benefits from a bound of [−A,A]. We define the
following learnable parameters:

• A: amplitude of oscillation,

• f : frequency of oscillation,

• Φ: phase shift of oscillation,

• b: vertical offset.

For a weight w ∈ W , each weight becomes:

w = A sin(fx+Φ) + b (2)

conditioned on the layer input X. The output of a single neuron y is com-
puted as:

zj =

n∑
i=1

wixi +Bj =

n∑
i=1

(A sin(fxi +Φ) + b)xi +Bj (3)

As revealed in Ba et al.’s work on layer normalization [5], statistical regula-
tion stabilizes the hidden state dynamics. Let:

µ =
1

m

m∑
j=1

zj (4)

σ2 =
1

m

m∑
j=1

(zj − µ)2 (5)

ẑj =
zj − µ√
σ2 + ϵ

(6)

For numerical stability, we use a constant ϵ → 0, and with trainable param-
eters γ and β, we normalize the layer output:

yj = γẑj + βj (7)

2



Gradient Analysis

To ensure stability, it is informative to perform gradient analysis:

∂y

∂A
=

γx sin(fx+Φ)√
σ2 + ϵ

(8)

∂y

∂f
=

−Ax2 cos(fx+Φ)√
σ2 + ϵ

(9)

∂y

∂Φ
=

−Ax cos(fx+Φ)√
σ2 + ϵ

(10)

∂y

∂b
=

γx√
σ2 + ϵ

(11)

∂y

∂γ
=

zj√
σ2 + ϵ

(12)

∂y

∂y
=

β − µ+ x [A sin(fx+Φ) + b]√
σ2 + ϵ

(13)

∂y

∂β
= 1 (14)

Initially, the frequency gradient poses concerns. In the event that this ar-
chitecture fails, we will investigate potential issues with ∂y

∂f .

Activation Function Testing

Choosing an appropriate activation function is non-trivial. As a baseline, we
test:

• (a) Sigmoid: yact = σ(yi),

• (b) ReLU: yact = ReLU(yi).

This concludes the basic architecture of our parameterizable wave function
weight network, which we refer to as ”WFNet.” Before proceeding with further
analysis, it is advantageous to test on a toy dataset. To this end, we create a
network that employs the WFNet architecture to classify digits in the MNIST
dataset.

3



Analysis of Sinusoidal Weights via Hyperbolic At-
tractors

In deep recurrent architectures, the phenomena of vanishing and exploding gra-
dients pose significant challenges for training [6]. This issue can be analyzed
through the lens of dynamical systems, where the recurrence relations in neural
networks form discrete-time dynamical systems. By examining the system’s hy-
perbolic attractors, we can understand gradients during backpropagation. We
extend this analysis to networks with sinusoidal weights, exploring how the
sinusoidal parameterization affects gradient flow and training dynamics.

Dynamical Systems Perspective

Consider a recurrent neural network (RNN) where the hidden state ht at time
step t is defined as:

ht = ϕ(Wht−1 + Uxt + b) (15)

where:

• ht ∈ Rn is the hidden state vector,

• xt ∈ Rm is the input vector,

• W ∈ Rn×n is the recurrent weight matrix,

• U ∈ Rn×m is the input weight matrix,

• b ∈ Rn is the bias vector,

• ϕ(·) is an activation function (e.g., tanh, ReLU).

The evolution of ht can be characterized by fixed points and their stability,
which are determined by the eigenvalues of the Jacobian Jt =

∂ht

∂ht−1
.

Sinusoidal Weights in Recurrence Relations

In our sinusoidal weight framework, the weights are parameterized as:

Wij = Aij sin(fijht−1,j +Φij) + bij (16)

Substituting W into the recurrence relation:

ht = ϕ

 n∑
j=1

[Aij sin(fijht−1,j +Φij) + bij ]ht−1,j + Uxt + b

 (17)

This introduces higher-order nonlinearity and dependence on ht−1, compli-
cating the dynamical analysis.

4



Jacobian Matrix and Gradient Propagation

The Jacobian matrix Jt is crucial for understanding gradient flow during back-
propagation:

Jt =
∂ht

∂ht−1
= ϕ′(zt)

(
∂zt

∂ht−1

)
(18)

where zt = Wht−1 + Uxt + b is the pre-activation vector, and ϕ′(zt) is a
diagonal matrix of activation function derivatives.

Computing the partial derivative ∂zt
∂ht−1

:

∂zt,i
∂ht−1,k

=
∂

∂ht−1,k

 n∑
j=1

Wijht−1,j

 = Wik +

n∑
j=1

ht−1,j
∂Wij

∂ht−1,k
(19)

Since Wij depends on ht−1,j , we need to compute
∂Wij

∂ht−1,k
:

∂Wij

∂ht−1,k
= δjk [Aijfij cos(fijht−1,j +Φij)] (20)

where δjk is the Kronecker delta. Substituting back into
∂zt,i

∂ht−1,k
:

∂zt,i
∂ht−1,k

= Wik + ht−1,k [Aikfik cos(fikht−1,k +Φik)] (21)

Eigenvalue Analysis

The behavior of gradients is influenced by the eigenvalues of Jt. If the spectral
radius ρ(Jt) is:

• Less than 1: Gradients tend to vanish,

• Greater than 1: Gradients tend to explode.

For sinusoidal weights, Wij and
∂Wij

∂ht−1,k
involve sinusoidal and cosinusoidal

terms, which can oscillate between −Aij and Aij .

Hyperbolic Attractors and Stability Analysis

Hyperbolic attractors are characterized by having no eigenvalues of modulus
one, leading to exponential divergence or convergence along different directions
in the state space. Linearizing the system around a fixed point h∗:

h∗ = ϕ(Wh∗ + Ux+ b) (22)

the Jacobian at h∗ is:

5



J∗ = ϕ′(z∗)

(
W +

∂W

∂ht−1
h∗

)
(23)

The presence of ∂W
∂ht−1

introduces additional terms that can significantly

affect the eigenvalues of J∗. Specifically, the term involving cos(fijht−1,j +Φij)
can cause the eigenvalues to fluctuate, potentially crossing the unit circle in the
complex plane.

Results

The implemented model, WFNet, uses custom wave-based weights, where the
weights dynamically vary as a sinusoidal function of the input, applied to the
MNIST dataset. Despite the use of complex sinusoidal weight behavior, the
model’s accuracy plateaued at 97.4%, showing no further improvement. The
training loss decreased consistently, but after a certain point, the test accu-
racy remained stagnant. This suggests that the wave-based approach may have
reached its capacity for this task or could indicate early convergence or over-
fitting to the training data. Fine-tuning, such as adjusting hyperparameters or
exploring regularization techniques, might be required to surpass this threshold.
For the code, please contact the author.

Conclusion

Analyzing sinusoidal weights through the perspective of hyperbolic attractors
provides valuable insights into the training dynamics of neural networks with
such weights. The oscillatory nature introduces complex dynamics that can ex-
acerbate the vanishing and exploding gradient problem. Understanding these
dynamics is crucial for designing effective training strategies and ensuring net-
work stability.

6



References

1. M. Ngom and O. Marin, ”Fourier Neural Networks as Function Approxi-
mators and Differential Equation Solvers,” Statistical Analysis and Data
Mining: The ASA Data Science Journal, vol. 14, 2021, pp. 641–661.
https://doi.org/10.1002/sam.11331

2. U. Uteluliyeva et al., ”Fourier Neural Networks: A Comparative Study,”
Intelligent Data Analysis, vol. 24, no. 5, 2020, pp. 1107–1120.

3. A. Mehrabian et al., ”Implicit Neural Representations with Fourier Kolmogorov-
Arnold Networks,” arXiv preprint arXiv:2409.09323v2, 2024.

4. V. Sitzmann et al., ”Implicit Neural Representations with Periodic Acti-
vation Functions,” Advances in Neural Information Processing Systems,
vol. 33, 2020, pp. 7462–7473.

5. J. L. Ba, J. R. Kiros, and G. E. Hinton, ”Layer Normalization,” arXiv
preprint arXiv:1607.06450, 2016.

6. Y. Bengio, P. Simard, and P. Frasconi, ”Learning Long-Term Dependen-
cies with Gradient Descent is Difficult,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, 1994, pp. 157–166.

7. G. Klambauer et al., ”Self-Normalizing Neural Networks,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

7

https://doi.org/10.1002/sam.11331

