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Learning Long-Term Dependencies
with Gradient Descent is Difficult

Yoshua Bengio, Patrice Simard, and Paolo Frasconi, Student Member, IEEE

Abstract— Recurrent neural networks can be used to map
input sequences lo outpul sequences, such as for recognition,
production or prediction problems. However, practical difficulties
have been reported in training recurrent neural networks to
perform tasks in which the temporal contingencies present in

s, We show why
- difficult

the input/ou
gradient

tput sequences§ In&
b R

“the dependencics 10 be

‘s the duration captured

“periods. Based on an understanding of this problem, alternatives
to standard gradient descent are considered.

. INTRODUCTION

E ARE INTERESTED IN training recurrent neural

networks to map input sequences 10 output sequences,
for applications in sequence recognition, production, or time-
series prediction. All of the above applications require a system
that wil [§tore and ipdate context information; i.c., information
computed from the past nputs and uscful 1o produce desired
outputs. Recurrent neural networks are well suited for those
tasks because they have an internal state that can represent
context information. The cycles in the graph of a recurrent
network allow it to keep information about past inputs for an
amount of time that is not fixed a priori, but rather depends on
its weights and on the input data. In contrast. static networks
(.., with no recurrent connection), even if they include delays
(such as time delay neural networks [15]), have a finite impulse
response and can't store a bit of information for an indefinite
time. A recurrent network whose inputs are not fixed but
rather constitute an input sequence can be used to transform
an input sequence into an output sequence while taking into
account contextual information in a flexible way. We restrict
our attention here to discrete-time systems.

Learning algorithms used for recurrent networks are usually
based on computing the gradient of a cost function with respect
to the weights of the network [22], [21]. For example, theback-
propag ime algorithm, |22) is a generalization
of back-propagation for static networks in which one stores
the activations of the units while going forward in time. The
backward phase is also backward in time and recursively
uses these activations to compute the required gradients.
Other algorithms, such as the forward propagation algorithms
[14], [23]. are much more computationally expensive (for
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1nm ! "l‘hm results expose a trade-off between el LT
ng by gradient descent and latching ﬁﬂm‘*ﬁ“ﬁm '

a fully connected recurrent network) but are local in time;
i.e., they can be applied in an on-line fashion, producing
a ‘partial gradient after each time step. Another algorithm
was proposed [10], [18] for training constrained recurrent
networks in which dynamic neurons—with a single feedback
{i6" themselves—have only incoming connections from the
input layer. It is local in time like the forward propagation
algorithms and il requires computation only proportional to
the number of weights, like the back-propagation through time
algorithm. Unfortunately, the networks it can deal with have
‘limited storage capabilities for dealing with general sequences
[7]., thus limiting their representational power.

A task displays long-term dependencies if prediction of
the desired output at time t depends on input presented
at an carlier time T < t. Although recurrent networks
can in many instances outperform static networks [4], they
appear more difficult 1o train optimally. Earlier experiments
indicated that their parameters settle in sub-optimal solutions
that take into account short-term dependencies but not long-
term dependencies [5]. Similar results were obtained by Mozer
[19]. It was found that back-propagation was not sufficiently
powerful to discover contingencies spanning long temporal
intervals. In this paper, we present experimental and theoretical
results in order to further the understanding of this problem.

For comparison and evaluation purposes, we now list three
basic requirements for a parametric dynamical system that
can leamn to store relevant state information. We require the
following:

1) That the system be able to [Store informatic

arbitrary duration.

2) That the system beﬁgﬁ;nmwg(le fluctuations

of the inputs that are random or irrelevant to predicting
a correct output).

3) That the system parameters be{trainable (in reasonable

time).

Throughout this paper, the long-term storage of definite bits
of information into the stale variables of the dynamic system
is referred to as'information latching. A formalization of this
concept, based on (hyperbolic attractors, is given in Section
IV-A.

The paper is divided into five sections. In Section Il we
present a minimal task that can be solved only if the system
satisfies the above conditions. We then present a recurrent
network ‘candidate solution and negative experimental results
indicating that gradient descent is not appropriate even for
such a simple problem. The theoretical results of Section IV
show that either such a system is stable and resistant 10 noise
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or, :altemal:ively. it is efficiently trainable by gradient de

but not both. The analysis shows that when trying to -
conditions 1) and 2) above, the magnitude of lhusgdnism'Sfy
of the state of a dynamical system at time t with e
to the state at time 0 decreases i yastinmpmI
We show‘ how this makes the back-propagation al;:m
gand gradient dcsm:m: in‘general) inefficient for learning of
ong term d_e?cndcncncs in the input/output sequence, hence
!'aﬂmg .condmon 3) for sufficiently long sequences. i:inally
in Sccnon' V. based on the analysis of the previous sections.
new algorithms and approaches are proposed and compared tc;
variants of back-propagation and simulated anncaling, These
algo.nthms are evaluated on simple tasks on which the span of
the input/output dependencies can be controlled.

II. MINIMAL TASK ILLUSTRATING THE PROBLEM

The f?llowing minimal task is designed as a test that must
necessarily be passed in order to satisfy the three conditions
enunT,raned above. A parametric system is trained to classify
two different sets of sequences of length T'. For each sequence
Uy, -+, ur the class C(uy,---,ur) € {0,1} depends only on
the first L values of the external input:

PEFRN ToL oF —

SEQUERCE CLAss, | Cluseyur) = C(“"""“’ﬂ
We suppose L fixed and allow sequences of arbitrary length
T >» L. The system should provide an answer at the end of
each sequence. Thus, the problem can be solved only if the
dynamic system is able to store information about the initial
input values for an arbitrary duration. This is the simplest
form of long-term computation that one may ask a recurrent
network to carry out. The values up 4, -,ur are irrelevant
for determining the class of the sequences. However, they may
affect the evolution of the dynamic system and eventually erase

i\ = the internally stored information about the initial values of the
B | input. Thus the system must latch information robustly, i.e., in
' ey such a way that it cannot be easily deleted by events that are
o) SE unrelated to the classification criterion. We assume here that

for each sequence, u; is zero-mean Gaussian noise for t > L.

The third required condition is learnability. There are two
different computational aspects involved in this task. First, it
is necessary to process uj,---,ur in order to extract some
information about the class; i.e., to perform classification.
Second, it is necessary to store such information into a subset
of the state variables (let us call them(lazching state variables)
of the dynamic system, for an arbitrary duration. For this
task, the computation of the class does not require accessing
latching state variables. Hence the latching state variables do
not need to affect the evolution of the other state variables.
Therefore, a simple solution to this task may use a latching
subsystem, fed by a subsystem that computes information
about the class.

We are interested in assessing learning capabilities on this
latching problem independently on a particular set of training
sequences; i.e. in a way that is independent of the specific
problem of classifying uy,---,ur. Therefore we will focus
here only on the latching subsystem. In order to train any
module feeding the latching subsystem, the learning algorithm

BAc KPROTRGHTIO™

SIMULATED
AIOEALL O

I
EEE TRANSACTIONS ON NEURAL NETWORKS, VoL 5. NO. 2, MARCH 1994

e e e s i
el chomiad portant question is th.us whether the L ~\Te ({1M (-
ng algorithm can propagate error information to amodule SYST
that feeds the latching subsystem and detects the events leading SUBNSEM
to latching. —

Hence, instead of feeding a recurrent network with the input
sequences defined as above we use only the latching subsystem
as a lest system and we reformulate our minimal task as
follows. The test system has one input h; and one output z,
(at each discrete time step #). Mhe initial inputs ;, for ¢ < L,
are values which can be tuned by the learning algorithm (e.g.,
gradient descent) whereas A, is Gaussian noise for L < { < T.
The connection weights of the test system are also trainable
parameters. Optimization is based on the cost function U ARE DS

1 4 MEAL i
0= 2 - |Enook cosT

FudeT\O ]
where p is an index over the training sequences and d” is a
target of +0.8 for sequence of class 1 and —0.8 for sequences
of class 0. S
In this formulation, A, (f = 1,-+-, L) represent the result of

the computation that extracts the class information. Learning
he directly is an casier task than compuling it as a parametric
function hy(u,,#) of the original input sequence and learning
the parameters 6. In fact, thelerror derivatives. 5 (as used
by backpropagation through time) are the same as if i, were

parametric function of u,. Thus, if h, cannot
ained as_parameters in the test system (because
r nt), they clearly cannot be trained as a
parametric function of the input sequence in a system that uses
a trainable module to feed a latching subsystem. The ability of
learning the free input values hy,---, hip is a measure of the
"efl of ‘th ient of errorinformation that would
i if the test system were connected
to the output of another module.

DUP\I’[TY

ITI. SIMPLE RECURRENT NETWORK CANDIDATE SOLUTION

We performed experiments on this minimal task with a
single recurrent neuron, as shown in Fig. I(a). Two types of
trajectories are considered for this test system, for the two
classes (k = 0, k = 1) I

zf = f(ar) = tanh(af)

OvAaMmiICs
OF BAS|IC

k— K k¥ t=Tea
z§=f:l1)f(=aal)+ t (n RNN QEUP-C‘A

‘can "f)e.easi.l-y obtained as

fon zero intersections of the curve & = tanh(a) with the line \ AWIALYTICAL
x = a/w). Assuming that the initial state at ¢ = 0is xg = -7, or

it can be shown [8] that there exists a value i” > 0 of the \\TEM PoGAL
input such that 1 intains its sign if ; * Vi,

input such that 1) z, maintains its sign if |h,[ < h* VI, and, O Wi

2) there exists a finite number of steps L, such that z, > T if
hy > h* ¥t < L. A symmetric case occurs for 1o = —F. h"
increases with w. For fixed w, the transient leﬁgth Ly decreases
with |h;|. Thus the recurrent neuron of Fig. 1(a) can robustly
\latch one bit of information, represented by the sign of ii_i
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the suoccs!ilully !Callllﬂg simulations,

in bold) have been tuned by one of

ence with respect to the initial weight uy and

white = high density), with L = 3 and T = 20. (b) Wﬂﬂ"""m
avergence with respect to the sequence length T, (with noise variance
& = 0.2, and initial weight wg = 1.23).

activation. Storing is accomplished by keeping a large input

m_.d (i.e., larger than k* in absolute value) for a long enough time.

Small noisy inputs (i.e., smaller than h* in absolute value)
cannot change the sign of the activation of the neuron, even if
applied for an arbitrary long time. This robustness essentially
depends on the nonlinearity.

The recurrent weight w is also trainable. The solution for
T > L requires w > 1 to producd..";@’_bisﬁﬁl_e‘jm-acmfs T
and —Z. Larger w correspond to larger critical value 1" and,
consequently, more robustness against noise. The trainable
input values must bring the state of the neuron towards ¥
or —F in order to robustly latch a bit of information against
the input noise. For example, this can be accomplished by
adapting, for t = 1,--+, L, h! > H and b < —H, where
H > h" controls the transient duration towards one of the
two attractors.

In Fig. 1(b) we show two sample sequences that feed the
recurrent neuron. As stated in Section II, k¥ are trainable for
t < L and samples from a Gaussian distribution with mean
0 and variance s for ¢t > L. The values of A for t < L
were initialized to small uniform random values before starting
training. A set of simulations were carried out to evaluate
the effectiveness of back-propagation (through time) on this
simple task. In a first experiment we inve: i effect of
th and of(d alues wp for the
self loop weight (see also [3]). A density plot of convergence
is shown in Fig. 2(a), averaged over 18 runs for each of the
selected pairs (wo, #). It can be seen that convergence becomes
very unlikely for large noise variance or small initial values
of w. L =3 and T = 20 were chosen in these experiments.
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ing | . 2 and wy = 1.25. In this case the task
consists in learning only the input parameters . As explained
in Secuo_n I1, if the leaming algorithm is unable to properly
Iu}ne the inputs /i, then it will not be able to leam what should
lngg;r latching in a more complicated situation. Solving this
Eask I$ @ minimum requirement for being able to transmit error
information backward, towards modules feeding the latch unit.
When T' becomes large it is extremely difficult to attain
convergence. These experimental results show that even in
the very simple Situation where we want to robustly latch on
one bit of information about the input, gradient descent on the
outpul error fails for long-term input/output dependencies, for
most initial parameter values.

IV, LEARNING TO LATCH WITH DYNAMICAL SYSTEMS

In this section, we attempt to understand better why learning
cven simple long-term dependencics with gradient descent
appears to be so difficult. We discuss the general case of a real-
time recognizer based on a parametric dynamical system. We
find that the conditions under which a recurrent network can
robustly store information (in a way defined below, i.e., with
hyperbolic attractors) yield a problem of vanishing gradients
that can make leaming very difficult.

We consider a non-autonomous discrete-time system with
additive inputs: e

Mag—1) + e

(2)

la=

1 —

and the corresponding autonomous dynamics o
e

[ o= Mloc 2

where' M is a nonlinear map, and a, and u, are n-vectors
representing respectively the system state and the external
input at time t.

To simplify the analysis presented in this section,

sider only a systc ts. However. mﬂa
stem with n ar = N{ar_y.ue1), can.

) with

stat bles and corresponding inputs. Suppose
€ R" and u; € R™. The new system is defined by
the additive inputs dynamics a; = N'(a;_;) + u; where
a} = (ar, ) is a n+ m-vector state, and the first n elements
of u, = (0,u;) € R"*™ are 0. The new map N’ can be
defined in terms of the old map N as follows: N'(a;_,) =
(N(a=1,¥t-1),0), with m zeroes for the last elements of
N'(). Hence we have y, = u,. Note that a system with additive
inputs with a map of the form of N'() can be transformed
back into an equivalent system with non-additive inputs. Hence
without loss of generality we can use the model in (2).

In the next subsection, we show that only two conditions
can arisc when using hyperbolic attractors to latch bits of
information. Either the-system is very sensitive to. noise, or
the derivatives of the cost at time ¢ with respect to the system
activations ap converge exponentially to-0'as ¢ increases.

This situation is the essential reason for the difficulty in
using gradient descent to train a dynamical system to capture
long-term dependencies in the input/output sequences.
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A. Analysis

In order to laich a bit of state
f‘cstrict the values of the syslem ac
its domain. In this way, it will be

information one wants o

tivity a, 1o M S of

possible to ]aICr‘iI-ltcrprcl ay

. as » the inputs may
push the system achivity a; out of this basin of attraction and

possibly into another one. In this section, we show that if the
attractor is hyperbolic (or can be transformed into one; e

a st.ablc periodic attractor), then the derivatives Za. qlllicﬁ;
vanish as | increases, Unfortunately, when lhes‘::nngradienls
because the influence
n the weights gradient.
d to be invariant under

Ly,

of short-term dependencies dominates i
Definition 1 A set of points E is sai
amap M if E = M(E).
) Deﬁm‘n’an 2: Alhyperbolic atiractor is a set of points X
invariant under the differentiable map M, such that Ya € X,
all eigenvalues of M’(a) are less than 1 in absolute value.
An attractor X may contain a single point (fixed point
attractor), a finite number of points (periodic attractor), or
an infinite number of points (chaotic attractor). Note that a
stable and attracting fixed point is hyperbolic for the map M,
whereas a stable and attracting periodic attractor of period [
for the map M is hyperbolic for the map M. For a recurrent
net, the kind of attractor depends on the weight matrix. In
particular, for a network defined by a; = W tauh(a,—1 )+
if W is symmetric and its minimum eigenvalue is greater than
=1, then the attractors are all fixed points [17]. On the other
hand, if |W| < 1 or if the system is linear and stable, the

AT|012 system has a single fixed point attractor at the origin.

Definition 3: The\basin of attraction of an attractor X is
the set #(X) of points a converging to X under the map M.
ie, B(X)={a:Ve, 3,3z € X s.t. |[M'(a) — x| <€}

Definition 4: We call I'(X'), the reduced attracting set of
a hyperbolic attractor X, the set of points y in the basin
of attraction of X, such that ¥I > 1, all the eigenvalues of
(M"Y (y) are less than 1.

Note that by definition, for a hyperbolic attractor X, X C
I'(X) c A(X).

Definition 5: A system islrobustly latched at time g to X,
one of several hyperbolic attractors, if ag, is in the reduced
attracting set of X under a map M defining the autonomous
system dynamics.

For the case of non-autonomous dynamics, it remains ro-
bustly laiched 1o X as long as the inputs u; are such that
a; € ['(X) for £ > ty. Let us now see why it is more robust to
store a bit of information by keeping a; in I'(X'), the reduced
attracting set of X.

Theorem 1: Assume x is a point of R™ such that there
exists an open sphere U(x) centered on z for which |M'(z)| >
| for all 2 € U(x). Then there exist y € U(x) such that
[M(x) = M)l > ll= -yl

Proof: See the Appendix.

This theorem implies that for a hyperbolic attractor X, if [

IE N
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(b}

Fig. 3. Basin of auraction (), reduced attracting set (I'Jof an attractor X',
Ball of uncertainty grows exponentially (a) outside [, but is bounded (b)
inside T

ap is in F(X) but not in I'(X), then the size of a ball of
uncertainty around ap will grow exponentially as ¢ increases,
as illustrated in Fig. 3(a). Therefore, small perturbations in
the input could push the trajectory towards another (possibly
wrong) basin of attraction. This means that the system will
not be resistant to input noise.'Wha input noi

;iﬁ;. orT ¢ outpuls, trast, the following
results show that if ag is in I'(X), a, is guaranteed to remain
within a certain distance of X when the input noise is bounded.

Definition 6: A map M is contracting onaset D if 3a €
[0,1) such that |M(z)— M(y)| < allz — y|| Yz,y€ D.

Theorem 2: Let M be a differentiable mapping on a convex
set D.If ¥z € D, |M'(z)| < 1, then M is contracting on D.

Proof: See [20]. .

A crucial element in this analysis is to identify the con-
ditions in which one can robustly latch information with an
attractor.

Theorem 3: Suppose the system is robustly latched to X,
starting in state ap, and the inputs u; are such that for all
t > 0, ||| < be, where b, = (1 — A))d. Let &, be the
autonomous trajectory obtained by starting at ap and no input
u. Also suppose Yy € Dy, |M'(y)| < A < 1, where Dy is a
ball of radius d around a;. Then a, remains inside a ball of
radius d around d;, and this ball intersects X when t — cc.

Proof: See the Appendix.

The above results justify the term “robust” in our definition
of robustly latched system: as long as a, remains in the reduced
attracting set ['(X) of a hyperbolic attractor X, a bound on
the inputs can be found that guarantees ¢ to remain within a
certain distance of some point in X, as illustrated in Fig. 3(b).
The smaller |M’(y)| is in the region around aq, the looser the
bound &, is on the inputs, meaning that the system is more
robust to input noise. On the other hand, outside I'( X i

s expan

CoTRACTING
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We now show the co
vanishing gradient,
Theorem 4: If the i i
3 © INput we is such that
a syste [
robustly latched on attractor X after time 0 H o o
as t — oo, .'hcnm‘;“"(]
Proof: See the Appendix,
The results in this section L
ormore bit of information in a
_gradnent with respect to paste

uences oo
nsequences of robust latching; i.e,, optimization algorithms for this purpose
1o two variants of back-propagation, .

Onc’way 10 help in the training of recurrent networks is to
set their connectivity and initial weights (and even constraints
on the weights) using prior knowledge. For example, this is
accomplished in [8] and [11] using prior rules and sequentiality
constraints. In fact, the results in this paper strongly suggest
that when such jprior knowledge is given, it should be used,
since the learming problem itself is so difficult. However,
there are many instances where many long-term input/output
dependencies are unknown and have 10 be learned from
examples,

and compare them

hus show that when sloring one
way that is Tesistant to noise, the
vents rapidly becomes very small
Wwith respect to recent events, In

ow that makes gradient descent

On parameter space (e.g., the wei ghts of a network) inefficient.

B. Effect on the Weight Gradient

Let us consider the effect
derivatives of a cost C
of a dynamical system,
weights W:
CAAN Ryuee |

< -
LAT
A. Simulated Annealing OIAVIATED

! of vanishing gradients on the
at time t with respect to parameters
say a recurrent neural network with

Global scarch methods such as'simulated annealing can be PINENAN
applied 1o such problems, but they are generally very slow.
We implemented the simulated anncaling algorithm presented
in [6] for optimizing functions of continuous variables. This
is a*“batch leaming” algorithm (updating parameters after all

BAteH
LEARN NI

\

3C, _ < aC, da,

ac, -- o
C xPARISION oF W Do W = Z a_'gﬂ%_ (4)| examples of the training sct have been seen). It performs a
;) cIGHT T r=¢ Y0 08y cycle of random moves, each along one coordinate (parameter)
= Ao ADIE . - . - ~ direction. Each point i ted j di h M <
GRAP 1-')A)‘g‘-‘ptlt-"se we are in the condition in which the network has R L S R e hiss M ETRoPYS
‘ : o Metropolis criterion [13]. New points are selected according CRITER 0N
_robustly latched. Hence for a term with 7 < t‘mfﬁfr‘ — 0. to a uniform distribution inside a hyperrectangle around the ="

This term tends to become very small in comparison to terms
for which 7 is close to ¢. This means that even though there
might exist a change in W that would allow a, to jump to
another (better) basin of attraction, the gradient of the cost with
respect to W does not reflect that possibility. This is because
the effect Bf@ smail change in W would be felt mostly on the
" near past (r close to ).

Let us see an example of how this result hampers training a
system that requires robust latching of information. Consider
for example a system made of two sub-systems A and B with
the output of A being fed to the input of B. Suppose that
any good solution to the learning problem requires B storing
information about events detected by A at time 0, with the
output of B at a later distant time 7" used to compute an error,
as in our minimal problem defined in Section IL. If B has not
been trained enough to be able to store information for a long

last point. The dimensions of the hyperrectangle are updated

in order to maintain the average percentage of accepted moves

at about one-half of the total number of moves. Afier a certain

number of cycles, the temperature is reduced by a constant e :
multiplicative factor (0.85 in the experiments). Training stops |- (051 ATTANED
when some acceptable value of the cost function is ataifed, 7, LEARNING-
when learning gets “stuck,”’ or if a maximum number of SREE,
function evaluations is performed. A “function evaluation™ = ./ BuALs
corresponds to performing a' single pass through the network,

for one input sequence,

B. Multi-Grid Random Search 6‘-—\-3_( )

This simple algorithm is similar to the simulated annealing SEAR, U
algorithm. Like simulated annealing, it"tries random points..
However, if the main problem with the leaming tasks was

plateaus (rather than local minima), an accepts

time, then gradients of the error at T" with respect to the output only points that reduce the error could be mbr_g‘;'fﬁ'g;gn;_ This

of A at time 0 are very small, since B doesn’t latch and the
outputs of A at time 0 have very little influence on the error at

algorithm has this property. It performs a (uniform) random
search in a hyperrectangle around the current (best) point.

time T On the other hand, as soon as B is trained enough to
i store information for a long time, thé right gradiens
pagate; but becavse they quickly vanish to very sms
ues, training A is very difficult (depending of the size of T
and the amount of noise between 0 and 7).

When a better point is found, it reduces the size of the
hyperrectangle (by a factor of 0.9 in the experiments) and
‘re-centers it around the new point. The stopping criterion is
the same as for simulated annealing.

|
A __s S ELaTOM
F: EuDo 5\5 [

C. Time-Weighted Pseudo-Newton Optimization A LooRTH N I

V. ALTERNATIVE APPROACHES

The above section helped us understand better why training
a recurrent network to learn long range input/output depen- 1 n w
dencies is a hard problem. Gradient-based methods appear ‘respect to that weight. This u- of i.nltn:st because adjusting |
inadequate for this kind of problem. We need to consider alter-  the learning rate could potentially circumvent the problem of |
native systems and op ization methods that give acoepiabis 'When the cost value on the last N, points does not change by more than ¢ |
results even when theie on fun on is not smooth a._nd__has\

VIS (a small constant) and these values are all within ¢ of the current optimil cost
@gphmﬁb In this section we consider several alternative  value found by the algorithm. In the experiments [¢ = 1001 and . = 4.

The pseudo-Newton algorithm [2] for neural networks has
the advantage of re-scaling the leaming rate of each weight
‘dynamically to match the curvature of the energy function with

CoRDINATE = PARNAETER
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vanishing gradient. The pseudo-Newton algorithm computes a

~=351an matrix (second derjva-

respect to l_ﬁc 1 ara
i meters) and "
parameters according to the following on-line ryje: s

Au(p)=-—__"1___ 3C(p)
ia‘za%?ﬂﬂ-ﬂ g “Oouw; (5)

where w;,where Aw,(p
patten p has been pre
and yt and 5 are sma

) is the update for weight w, after
sented, C(p) is the cost for pattern p,
Ii'posilivc constants, This amounts to
ming rate for cach parameter by using
econd derivative with respect to each
parameter as a normalizing factor. When |a‘—£(}’l| is small
tkfe curvature is small (around the current v -~ :
direction corresponding to the w; axis,
can be taken in that direction. This algorit
cx_?eriments described in Section V-E. It
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the inverse of the s

alue of w) in the
Hence a larger sicp
hm was tested in the

consistently performs
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ROTC, S wed the span of input/output dependencies.
:'Ihls algorithm and our theoretical results in Section 1V in-
spired the following lime-weighted pseudo-Newton algorithm,
The basic idea is 1o consider the unfolding of the recurrent
network in time, and each instantiation of a weight (at different
times) as a separate variable, albeit with the constraint that
these now separate variables should be equal. To simplify the
problem, we consider here a cost C(p) that depends on the
output of the network at the final time step of sequence p.
Hence the weight update for 1, can be computed as follows;

Sy 1, 0
r|ﬁ-§,?l+# Owiy

Awi(p)

(6

where w;, is the instantiation for time ¢ of parameter w;. In

this way, each (temporal) contribution to Aw;,(p) is weighted
by the inverse curvature with respect to wye, the instantiation
of parameter w, at time £.° The reader may compare the
above equation with (4), where all the temporal contributions
are uniformly summed. Consequently, updating w according
to (6) does not actually follow the gradient [but neither
would following (5)]. Instead, several gradient contributions
are weighted using second derivatives, in order to make faster
moves in the flatter directions. As for the pseudo-Newlon
algorithm of [2], we prefer using a diagonal approximation
of the Hessian that is cheap to compute and guaranteed
to be positive. n is a global leaming rate (0.01 in our
experiments). The constant u is introduced to prevent Aw
: 2'c ;
from becoming very large (when |m§ﬂ| is very small).
However, we found that much better [')'erfonnamc can be
attained with the recurrent networks when p is adapted on-
line. This prevents the maximum Aw from being greater than
a certain upper bound (0.3 in the experiments) or smaller than a
certain lower bound (0.001 in the experiments). The constlant u
'is updated with a “momentum” term (0.8 in the experiments),
in order to prevent it from decreasing too rapidly when the first
and second derivatives vary widely from sequence to sequence

2The idea of using second derivatives in this way was inspired from
discussions with L. Bottou.
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and have very small magnitude (for example when the norm
of the weight matrix |W/| is less than 1),

D. Discrete Error Propagation

The analysis of Section IV could suggest that the root
f the problem lies in the essenlially discrete nature of the
ess of storing information for an indefinite amount of time.
Indeed, the gradient backpropagated through time vanishes
when the system slays in the same stable state for several
time steps, Intuitively, we would like to recover some error
{information, at the time when the input made the system
reach that stable state. Instead of propagating a gradient
through differentiable units, the algorithm presented here was
explicitly designed to propagate discrete error information
through units that compute a non-differentiable function, such
as a hard threshold. In this way we hope to find algorithms that
dircctly address the problem of propagaling error backward in
time, even though the process of robustly storing information
appears to have a discrete nature.

Other methods have been explored in order to train layered
networks of hard threshold units. For example, in [1] it is
shown how 1o train two layered networks using a probabilistic
approach. In [9] a method is proposed that iterates two
training steps: fadjusting’the network internal representation
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ed to recurrent net-
works as well. Both methods take advantage of probabilities in
order to make the error function differentiable, thus permitting
the use of gradient descent. Another approach, proposed in
[12], applies to two layer networks, The space of aclivities
of hidden units is searched in a greedy way in order to
reduce output error. An earlier algorithm also related to the
one presented here, but based on the propagation of targets,
was proposed in [16). The algorithm introduced here, instead,
relies on propagating discrete error r information, obtained with
a finite difference approach.
A neural network can be represented as a series of local
elements with each alforward propagation function and an
[error propagalion function. We will derive these functions for a
“discrete element and show how they can be used together with
standard differentiable elements to, minimize a cost function:
Our building block for discrete elements is the non-linear
threshold function. The forward propagation is given by

yi(x) = sign(z;) (%))

e
where 1, € {—1,1} is the output of unit ¢ and z; € R its
input. We are now interested in finding the discrete counterpart
of gradient propagation for this unit. To backpropagate an
error signal, we should first establish the relation bet@

variations of the outputf@y and variations of the input Az,

This can be done in a systematic way. The variation Ay;(Axr;)
can be easily computed from (7) by considering under which
conditions the output y of a discrete threshold unit will change
by 2, -2 or O

2 ifo; < 0and z; + Az, > 0
-2
0

.ﬁ?,‘

ifz; >0and z; + Az, <0 (8)

otherwise
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and from this equation we can cq .
Azi(Ay:) of z; when mpute the desired variation

th_e des_iTed variation of y; is Ay

A = % ‘fAy|=2
Zi= ==z if Ay = -2

0 otherwise @

where ¢ is a posilive constant. W
Az, the desired changes in ¢, lantivj; -
cost function on our system whe certai
M icimad “pendo-gradient” 4C. should et
oz llsf:cig ::] chmlge of Ty on the cost €', Tn our experiment
i us‘::ihc “m'_a—m if :.ﬁy.-“;é 0 and 0 otherwise,
2 0] o pseudo graducn} we must insure that Ay, is
2,-2,0} since .A::'[Ay.} is not defined for other values.
This is af:hw\rcd using a stochastic process. Let’s assume that
there exist two constants MIN and MAX such that the
error sgnal £ = g; 1o be backpropagated is a real number
sausf.ymg M < gi £ MAX. We define the stochastic
function Ay, = S(g;), which maps g, to {—2,2} as follows.

respectively. Let C be a

P(S(gi) =2) A~Mm

P(S(a)=~2) = sixxsifiv

(10

Provided that —2 < MIN and MAX < 2, it is casy to
show that the expectation of S(g;) is exactly g;, even though
S(g;) can only take two values (if |g;| > 2 the resulting
expected value will be -2 or +2). Furthermore the sum of this
“pseudo gradient”™ over several patterns quickly es 1o
the sum of the continuous valued g;'s.

The non-lincar threshold unit can be used in combination
with any other differentiable elements that backpropagate the
gradient in the usual fashion. The important point is that when
a non-linear threshold unit is connected to itself in a loop
with a positive gain, two stable fixed points are induced.
The “pseudo gradient” along this loop doesn’t vanish with
time, which is the essential reason for using discrete units.
This pseudo-gradient doesn't vanish along the loop, as can be
observed by repetitively applying (8) and (9) and noting that

if the pseudo-gradient is large enough in magnitude then it is '

always propagated.

This approach is in o way optimal and many other dis-
crete error propsgaiionalgorimms are possible. Another very
promising approach for instance is the trainable discrete flip-
flop unit [3] which also preserves error information in time.
Our only claim here is that discrete propagation of error
offers interesting solutions to the vanishing gradient problem
in recurrent network. Our preliminary results on toy problems
(see next subsection and [3]) confirm this hypothesis.

E. Experimental Results

Experiments were performed 10 evaluate various alterna-
tive optimization approaches on problems on which one can
increase the temporal span of input/output dependencies. Of
course, when it is possible, first training on shorter sequences
helps a lot, but in many problems no such “short-term” version
of the problem is available. Hence a goal of these experiments
was to measure how these algorithms can perform when it is

ow denote by Ay; and '
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Fig. 4. ComparitiVe simulation results for: O standard back-propagation, 7
pseudo-Newton, & time-weighted pscudo-Newton, O discrete error propa-
gation, ® multi-grid random search, [J simulated annealing. The horizontal
axis (T) represents maximum sequence length. On the left, the vertical axis
represents classification error after training; on the right, the number of
sequence presentations to reach a stopping criterion.

not possible to train using sequences with equivalent short-
term dependencies. Experiments were performed with and
without input foise (uniformly!distributed in [-02,0:2]) and
varying the length of the input/output sequences. The criteria
by which the performance of these algorithms were measured
are (1) the'average classification error at the end of training,
i.c., after the stopping criterion has been met (when either some
allowed number of function evaluations has been performed or
the task has been learned), (2) the ‘average number of function
evaluations needed to reach the stopping criterion.
Experiments were performed on three problems: the Latch
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problem, the'2-Sequence problem, and the Parity problem. For /negHp D

each of these problems, a suitable architecture was chosen and
all algorithms were used to search in the resulting parameter
space (except that the discrete error propagation algorithm

\ard threshold neurons instead of symmetric sigmoids).
Initial parameters of the networks were randomly generated
for each trial (uniformly between -0.5 and 0.5). The choice
of inputs and the noise for each training sequence was also
randomly generated for each trial. The same initial conditions
and training set were used with each of the algorithms (at a
given trial). For each trial,sa training set was generated with
;sequences whose length is uniformly distributed between 7'/2
and T, The number T’ (maximum sequence length) is displayed
in Fig. 4. The tasks all involved a single input and a single
output at each time step.

]'T}'I-,ércﬁ Problem) The Latch problem is the same as de-
scribed above in Section III. Here we considered only three
adaptive parameters: the self-loop weight w, the initial input
value 1, for “positive” sequences (with positive final target),
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and the initial input valye
negative final target), The
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pl‘ppa_gation but its performance also appears to worsen
with increasing sequence length.

N varies from pattern to pattern and noice : ' Vi ConSgon

Recurrent networks are very powerful in their ability to
represent context, often outperforming static networks [4].
However, we have presented theoretical and experimental
evidence showing that gradient descent of an error criterion

belonging to one of the 1wo classes and s

(or update it if conflicting information arrives) until its output

is read out (which o i ; may bnmﬂqrmc to train them for tasks involving long-term
once per sequence). These iniliﬂlyklme but is done only \dependencies. Assuming hyperbolic attractors are used to store

ey subsequences were

dj;!_n&y_t_ion in [-1,1].

a fully connected recurrent net-

bias (one of the units reccived

« the network has 25 free param-
_

——

state information, we found that either the system would not 7 RADE -0FF
be robust to input noise or would not be efficiently trainable
by gradient descent when long-term context is required. Note
that the theoretical results presented in this paper hold for

randomly generated from a uniform
In all experiments we used
work with five units and no
external additive input; ie.

P -any_error criterion and not only for the mean square error

3 P : Problem| o criterion. Two simple generalizations are obtained as follows.

?‘\Q lT\f ; cartty Froblem., The Parity problem consists in produc-  As mentioned in the analysis section, a periodic attractor can
ing the parity of an|mp

PR band =1’ (ie, a | e transformed into a fixcd point by subsampling time with the <37 —
UG ‘B‘J Eﬁ \ S!.lm‘!ld be produced in output if and only if the number of period of the attractor, Hence, if the corresponding fixed point SIABLE
I's in the input is odd). The target is only given at the end is.stable, it is also hyperbolic and our results hold in that case
of t!.'c sequence. The length of the sequence may vary and as well. Another interesting case is the situation in which the
the input may be noisy. It is a difficult problem that has local system doesn’t remain long near an attractor, but rather, jumps
minima (like the XOR problem), and that appears more and [rapidly from one stable (hyperbolic) attractor to another. This
more difficult for longer sequences. Most local optimization  would arise for example if the continuous dynamics can be
algorithms tend to get stuck in a local minimum for many  made to correspond to the discrete dynamics of a deterministic
initial values of the parameters. The minimal size network finite-state automaton, In that case, our results hold as well
that we implemented has 7 free parameters and 2 units (2 since the [norm of Jacobian of the map derivatives near each
inputs connected to 1 hidden and | output units). Although it ~of. the attractor is less than one '(%{T = M'(ay—1)). What
requires less parameters than the 2-Sequence problem, it is @ “remains to be shown is that similar problems occur with
more difficult learning problem. chaotic attractors; i.e., that either the gradients vanish or the
The results displayed in Fig. 4 can be summarized as system is not robust to input noisc. It is interesting to note
follows: that related problems of vanishing gradient may occur in deep
1) Although [simulated annealing performed well on all feedforward networks (since a recurrent network unfolded in
AL LATE problems, it requires an order of magnitude more train- time is just a very deep feedforward network with shared
SIMULATED  prodle ' e :
ing time than all the other algorithms. This is not weights). o ‘
I\N1QE4\LJ\-\)G; surprising since it is global search algorithm. The multi- The result presented here does not mean that it is impossible
l grid algorithm is faster but fails on the Parity problem, to train a recurrent network on a particular tas_k. It says that
probably because of local minima. It is also interesting to  gradient descent becomes increasingly inefficient when the
note that on the Latch problem with simulated annealing, temporal span of the dependencies increases. Furthermore_. for
training time increases with sequence length. Although  a given problem, there are sometimes ways to help the training
the best solution is the same for all sequence lengths, by sctting the network connectivity and ‘initial weights (and
the error surface for longer sequences could be more even constraints on the weights) using prior knowledge (c.g.,

difficult to search, even for simulated annealing. [8], [11]). For some tasks, it is also possible 1o present a variety
Di S’w 2) Th@mmwgaﬁm algorithm performed rea-  of examples of the input/output dependencies, including short-
[2(;_9(1 sonahl; well on all the problems and sequence lengths, term dependencies that are sufficient to infer similar but

R and was the only one with simulated annealing that could longer-term dependencies. For example, in tl"le‘Latch.pmbl_c_m o
Q:_\WE;.‘P‘T“O solve the Parity problem. Because it performs an on-line or the Parity problem, if we start _by training with @hﬁﬂ
L local search it is, however, much faster than simulated &uenm. the system rapidly settles in the correct region of

annealing. It seems lo be more robust to local minima parameter space. . .

S than the multi-grid random search. A betler underls:andil-;l]g of this problem has dv_e:p_ us to de-

i 3) The! pseudo-Newion back-propagation algorithm con- sign a_l_lc_rgg{ive algorithms, su shted

FTELED ol !\1) sistent y " peér:'r:rms better than the standard back- Wmlﬂ theldi r

Bo,‘:.&w AGNTO propagation. However, both see their performance first case, we consider the insta !

worsen when the temporal span of input/output ent times as different variables and consider the curvature of

dependencies increasing, the cost function f(_)r these \'_aria‘bles. This inf(?rmatmn is use_d

e NEIGHTED 4) The [time-weighted pseudo-Newton nlgoﬁ&lm'__appears to weight the gradient conmbutmn's fqr th§ different times in

%EDV)'WUM to perform better than the other two variants of back- such a way as to make larger steps in directions where the cost
(4
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function is flatter. The discrete error propagation algorithm

ates error information through a mixture of discrete and
continuous elements. The gradient is locally quantized with
a stochastic decision rule that appears to help the algorithm
in locally searching for solutions and getting out of local
minima. We have compared these algorithms with standard
optimization algorithms on toy tasks on which the temporal
span of the input/output dependencies could be controlled,
The very preliminary results we obtained are encouraging and
suggest that there may be ways to reconcile leaming with
ston'r!g. Good solutions to the challenge presented here to
learning long-term dependencies with dynamical systems such
as I'ECUI.:I\:I‘Et networks may have implications for many types
of applications for leaming systems; e.g., in language-related
problems, for which long-term dependencies are essential in
order to make correct decisions.

VII. APPENDIX

A. Proaof of Theorem 1

By hypothesis and definition of norm, 3 u s.t. [lul| = 1
and ||M'(z)ul| > 1. The Taylor expansion of M at z for
small value of A is:

s P _

(11)\

M(z + Au) = M(z) + M'(z)Mu + O(|Mull*).

Since U(z) is an open set, 3 A st [[O(|Muf®)] <
A(||M'(z)ul| 1) and z+ u € U(z). Letting y = 7+ Au we
can write [|[M(y) — M(z) — M'(z)u = O]l <
MMl - A or —[M(y) — M(z) = M'(@)Aul
+||M'(z)Au| > . This implies using the triangle inequality
IM(y) - M) > A = [le - yllO

B. Proof of Theorem 3

Let us denote by py the radius of the“ncertanty ™ ball =
{a:||d¢ —al| < p¢} in which we are sure to find a,, where d;
gives the trajectory of the autonomous system. Let us suppose
that at time ¢, py < d (this is certainly true at time 0, when
dp = ap). By Lagrange's mean value theorem and convexity
of Dy, 3z € Dy st ||M(z) - M(y)]| £ |M*(2)|||z = vl|, but
[M’(2)| < A« by hypothesis. Then by the contraction theorem
[20] we have pee1 < Aed + b,. Now by hypothesis we have
be = (1 = Ae)d, 50 pes1 < d. The conclusion of the theorem
is then obtained since d; € D¢ by our construction above and
d, converges to X for ¢t — oco. O

i -

C. Proof of Theorem 4
By hypothesis and definitions 4 and 2.

dar

dar_1

= |M'(ar1)| <1

for f>l}.hcnce§§:—!0ast-—soof:l.
One could however ask what happens when a, remains near
the boundary between two basins:

10 et ai:: LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT

Lefnma: Suppose that for t > 0, ap and u, are such that a;
remains on the boundary between two basins of attraction for
faltrnctom X1 and X5, and there exists an infinitesimal change
in ag yielding the state into either X, or X and remaining
there. Then

It appears that the hypotheses of this lemma will rarely be
satisfied, for two reasons. First, the system evolves in discrete
time, making it improbable to obtain a; preciscly on the

boundary surface. Second. in order to stay on that surface, say

S(a¢) = 0, uy must satisfy the equation S(M(ae—1)+ue) = 0
Hence the submanifold of values of 1, in R™ that satisfy this
equation has dimension m — 1, thus having null measure.

D. Generalization to a Projection of the State

The results obtained so far can be generalized 1o the case
when a projection Pa, of the state a; CONverges to an attractor
under a map M. This would be the case, for example, when
a subset of the hidden units in a recurrent network participate
directly in the dynamics of a stable attractor. Let P and 12 be
orthogonal projection matrices such that PR ——

a; = P_"';;_-'F R"’y;
ze = Pagye = Ra,
PRt =0;RP* =0

where A*+ denotes the right pseudo-inverse of A; i.e. AAT =
1. Suppose M is such that P can be chosen so that z; con-
verges to an attractor Z with the dynamics 2; = Mp(z:i-1) =
P,M(P*z + Rty,) for any ye. Then we can specialize all
the previous definitions, lemmas, and theorems to the subspace
sspanned by P. When we conclude with these results that
gn — 0, we can infer that e RHQUR ; ic., that
the derivatives of a; with respect to ap depend only on the
projection of a on the subspace fa. Hence the influence of
changes in the projection of a on the subspace Pa is ignored in
the computation of the gradient with respect to W, even though
non-infinitesimal changes in Pa could yield very different
results (i.e., jumping into a different basin of attraction).
Although training can now proceed in some directions, the

(12)

" effect of parameters that influence detecting and storing events
‘for the long-term or switching between stable states is still not
- taken very much into account.
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