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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Expeﬁmonts on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achleveseZB«IBIEU on the WMT 2014 English-
to-German translation task]ji over the existing best results, including
cnsemh]es{hy’ma'z BLEU. On the 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BEEU scoré of 41.0, after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the

best models from the literature. . §
3.5 dap 2'(54“:/&"&16’8... C-‘-ap.

1 Introduction

Recurrent neural networks, long short-term memory [12)] and gated recurrent [7)| neural networks
in particular, have been firmly established as state of the art approaches in sequence modeling and
transduction problems such as language modeling and machine translation {29][2][5). Numerous
eﬁomhawmwmmodmmmebmm:hrmnfmnmﬂmgugemoddsmdmmdmdmder
architectures [31][211[T3].

*Equal contribution. usungwdanmdmlah)bpmpow&_wngNN|mﬂ:sulf-umﬁmandstmed
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head

“ attention and the parameter-free position representation and became the other person involved in nearly every
dm:ﬂ_Nihdeun;iMumdmdwdmwdwmﬂmmddvmmummmmnﬂmdcbmmd
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.
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Recurrent models typically factor computation along the symbol positions of the input and output . |-

sequences. Mgnmgmpoﬁﬁmwmpsinmmﬁmﬁmmwamofm
states hy, as a function of the previous hidden state b1 and the input for position . This inherently
sequential nature precludes parallelization within training examples, which becomes critical at longer
SSQUENCe l?“sths- asgmemOory constraifits limit batching across examples. Recent work has achieved
significant ements in computational efficiency through factorization tricks {I8] and conditional
computation {26}, while also improving model performance in case of the latter. The fundamental
constraint of sequential computation, however, remains.

Attention mechanisms have become an integral part of compelling sequence modeling and transduc-~
tion models in various tasks, allowing modeling of dependencies without regard to their distance in
the input or output sequences [2[16). In all but 2 few cases {221, however, such attention mechanisms
are used in conjunction with a recurrent network.

In this work we propose the Transformer, a model architecture eschewing recurrence and instead
relying entirely on an attention mechanism to draw global ies between input and output.
The Transformer allows for significantly more parallelization and can reach a new state of the art in
translation quality after being trained for as little asgwelve hours, on eight P100 GPUs.

2 Background

jon also forms the foundation of the Extended Neural GPU
i networks as basic building

it more difficult to learn dependencies between distant
reduced to a constant number of operations, albeit at the cost of reduced effective resolution due
to averaging attention-weighted positions, an effect we counteract with Multi-Head Attention as
described in section[3.2]

Self-attention, sometimes called intra-attention is an attention mechanism relating different positions
of a single sequence in order to compute a jon of the sequence. Self-attention has been
used successfully in a variety of tasks including reading comprehension, abstractive summarization,
textual entailment and learing task-independent sentence representations {4221 23)[19].

End-to-end memory networks are based on a recurrent attention mechanism instead of sequence-

ahgnedmmntmmdlmwbmmmpmfmnweﬂmﬁmpl&lmgugeqmsﬁmmweﬂngmd
language modeling tasks (28]

To the best of our knowledge, however, the Transformer is the first transduction model relying
entirely on self-attention to compute representations of its input and output without usi uence-

iny

RN

_without psing sequence-
aligned RNNS or convolution. Tn the following sections, we will describe the Transformer, motivate (%]
self-attention an

3 advu&gmwermudelssmhuﬂﬂmﬂ@.
3 Model Architecture

Mnnwmpeﬁﬁvemmﬂwquenmmsducﬁmmnddshaveanamdﬂhdecodﬁs&ucm 312125
Here, the encoder maps an input sequence of symbol representations (Z1, .- Zn) 1O @ SequUence

of contitiuous representations z = (21, ..., zn). Given z, the decoder then generates an output [X,|
sequence (Y1, -, Ym) Of symbols one element at a time. At each step the model is auto-regressive

{91, consuming the previously generated symbols as additional input when generating the next.

“The Transformer follows this overall architecture using stacked self-attention and point-wise, fully

cmmu:_ted]nyexs for both the encoder and decoder, shown in the left and right halves of Figure[T}
respectively.

] [Gm
3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6identical layets. Each layer hasigwo
ib-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
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Figure 1: The Transformer - model architecture.

feed-forward network. We employ a residnal connection {10} around each of
rmalization [1]. That is, the output of each sub-layer is
is the function implemented by the sub-layer

Jayers in the model, as well as the embedding

wise fully
the two sub-layers, followed by layer no

LayerNorm(z + Sublayer(z)), where Sublayer(z)
itself. To facilitate these residual connections, all sub-
layers, produce outputs of dimension dmodel = 512.

THE SR AL

of a stack of N = 6 identical layers. In addition to the two
olihead SINCE [s N9

sub—laye;s in each encoder layer, the decoder inserts a third sub-layer, which performs:
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections (HE DE=DER.
around each of the sub-layers, followed by layer normalization. We also modify the self-attention

sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, cnsures that the
predictions for position i can depend only on the known outputs at positions less than i

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
all vectors. The outpot is computed as a weighted sum

where the guery, keys, valoes, and output are

of the values, where the weight assigned to each value is computed by a compatibility function of the

que:yml.hthecompondmgkey. A\ e RELY oN .S 3
ALMQ’TM‘\;

321 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention” (ﬁgm*c@. The input consists of
f dimensiof d,,. We compute the dot products of the

queries and keys of dimension dy, and values O
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of @
attention layers running in parallel.

@qucry with all keys, divide m@by /dy, and apply a§0f
values.
In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. mukgygmdgl_ugmﬂmpack:dwgetherimnmauims K and V. We compute

V 2 -~ . ix of outputs as: K - ¥ i r-(.'; R
K; .n f ﬁTTE}SW) \.} QKT . ! .
VA acoRE Attention(Q, K, V) = softmax( 7 W (K, @

3 oLk
\/'m The two most commonly used attention functions are additive attention {2}, and dnt-—pmd::!ct (multi-

| plicative) attention. Dot-product attention is identical to our algorithm, except for theyscaling

of _L_. Additive attention computes the compatibility function using a feed-forward netw

a singﬂe hidden layer. While the two are similar in theoretical complexity, dot-product attention is

and(miore spac gient in practice, since it can be implemented using highly optimized

matnx multiplication code.

While for small values of dj the two mechanisms perform similarly, additive attention outperforms

dotpmduﬂmwﬂmmhngfmlalwvﬂmofdk [3]. We suspect that for large values of

di, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients{‘| To counteract this effect, we scale the dot products by v

3.22 Multi-Head Attention

Instead of performing a single attention function with dmoges-dimensional keys, values and queries,
we found it beneficial tolinearly projectlthe queries, keys and values h times with different, learned
linear projections t0.dy, di. and d,, dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding d,-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure[2

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

“Tnmu::mwhymmmsalmgs,mmmmmemmmmsofqmkmindepmdunmndnm
varigbles with mean 0 and variance 1. Then their dot product, g - k = Yo%, gik:, has mean 0 and variance di.
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LESS BFFECTIVIE
€. 2048 ToKENS

Table 1- Maxim,
for d la “mpa&'k’“g‘hl. per-layer i
or differeny ver r eomplcmtyandminimnmnumbaofsequ ial operati
$1ze of convolutions ang ize Jnence length, d is the representation dimension, ks kemel
o e
yer Type Complexity per Lq i i
Per Layer  Sequential Maximum Path Length
Self-Attention s
S O™ ) o) o)
Cmo ‘1"-““ t 0((]];(;“ . d?‘l) O(n) O(n
- - : n
Self-Attention (restricted) O(r-n.d) 88% og‘()f:/g)l))
bottoms of the encoder and decoder iti
: stacks. The positional encodings have the imensi
i gs have the same dimension dpgy
: ﬁnﬂnbedmnmdﬁxedgsfﬁ?thmﬂmtwombemmed.ﬁuem

many choices of positional encodings,
In this work, we use sine and cosine functions of different frequencies: .
SINUE 1D
BeeNG-S,

PE (pos,2i) = 8in(pos /10000 dwsa) -
PE(pos,2i+1) = cos(pos/10000%/ dmea) 2-1=6553¢6

o

- HEoE areading
0sitio -'I'hatis,eachdimmsionoftheposilionalencoding\i

mpopdstoa_mmmmmgmsfmagmwkmmﬁomhm-lm-h.We

chos;th:sf}mononbecauscwehypomesimditwomdanuw th:mndc]mcasi]ylmmmauendby

relative positions, since for any fixed offset k,

PEpos.+k can be represented as a linear function of
PE...

We also experimented with using s ositional embeddings (8] instead, and found that the two
versions produced §igan (see Table[3 row (E)). We chose the sinusoidal version
bec_mseit_mny allow the model to extrapolate

during training.

to sequence lengths longer than the ones encountered

4 Why Self-Attention

In this section we compare various aspects of self-attention layers to nt and
layers commonly used for mapping one variable-length sequence of symbol representations
T1,.-.,Zn) to another sequence of equal length (21, ...,2,), with 2;,z; € RY, such as a hidden
layer in a typical §EquEnce fransd t or decoder. Motivating our use of self-attention we
consider three desiderata,
One is the total'cs
' be parallelized, as

i complexity per layer. Another is the amount of computation that can
measured by the minimum number of sequential operations required.

CAN WwWE (JsE
Thethhﬂisd:epﬂﬁlength.betwemlmg—rmgedepmdmdes.inthenetwwhLeaminglong_-mnge ck L2 TCD
dependencies is a key challenge in many sequence transduction tasks. One key factor affecting the L ":]

r

ability to learn such dependencies is the length of the paths forward and backward signals have to +)/DE PzpenDEl- Y

Uavetseinlhcnctwcrk.TheshaﬁcrlhesepathsbetwwnanymmbinaﬁunofposiﬁonsintheinpmN O(Eikc{1)', J\
and output sequences, the easier it is to learn long-range dependencies [11]. Hence we also compare 32,
the maximum path length between any two input and output positions in networks composed of the <
different layer types.

Asnotedin'lhhl:@ss:if-mﬁnnhyercmmnﬂpmiﬁmswhhn

Pof sequentially
executed operations, whereas a recurrent layer requires O(n) sequen

operations. In terms of
computational complexity, self-attention layers are faster than recurrent layers when the sequence

3 . = - 3 - - -th
length n is smaller than the representation dimensionality d, ?Ifhlc}l is most often the case wi
sentence representations used by state-of-the-art models in machine translations, such as word-piece
(31} and byte-pair (23] representations. To improve computational performance for mlvu;E
very long sequences, self-attention could be restricted to considering only a fiéighboricod of sizex




- . Do THEY Fbt..l.(}u}
. . investigate 1 - his would increase the maximum UPON THIg?

Sngle m;g‘g“:omﬂ 1ayer with keme] wigyy & : ' ‘
or Ollogi (n)) in the gge 2 225K of O(n/k)

between the case of

: pairs of input and

convales o Olational Iayers inmecaseofmm
mml’miﬁminthg m@mmgﬂtlﬂlﬁhofmehngeam

%l I by a o knetm Cmrvolunm{ni layers are generally more expensive than

considerably, o Ok n.d4n, -'d’) Even with f oS K6, however, decrease the complexity §EpeRnDLE
Convolution j equal to the combinatiop ofv:ns;fnh k = n, however, the complexity of a separable CoNVOLUTIONS
the approach we take i our mode), -altention layer and a point-wise feed-forwand layer,

Qiﬁd;.: moﬁ';:?id reaom could yield morc ifefp - We inspect attention distributions

heads clearly lean to perform g0 ix. Not only do individual attention

and semantic structure of the qe. crent llSkx. many appear to exhibit behavior related to the syntactic

5.2 Hardware and Schedule x §+oon

Wen'ainedourmodelsononemachinewilhsNVIDMPm(}(ﬂ’Us. For our

base models using
thehypelparmmdesmibedthmughmtmepa er, each training step took about 0.4 seconds. We
trained the base models for a total of 10 w00 steps or 12 hoiifs. For our big models,(described on
bottom line oftable@, step time was 1.0 seconds. The big models were trained for{300,000 steps

=5 ARE e VALDES OPTIMALY :
We used the Adam optimizer [17] with 8; = 0.9, 8, = 0.98 and e = 102, We vari he learning
the course of training, according to the formula: w

LEARBIVG -
&;\mm Irate = dpgi5; - min(step_num =%, step_num - warmup_steps %) 3

This corresponds to increasing the learning rate linearly for the first warmup_steps training steps,
mddmshghthueaﬂerpmporﬁmaﬂymthemmsqmmofﬂwswpmmben We used
warmup_steps = 4000.

54 Regularization
We employ three types of regularization during training:
Residual Dropout We appl _ to the quipuviofeach sab-layer, before it is added to the

iti mmm&MMddwwasmks.Fmﬂnmm,mmamof
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achieveg better B mode
rman and gy s LEU Scores than prevy; -
- 8lish-to-French newstest2014 !esl‘.g at amﬁmning clsstm e
ode] BLEU Training Cost (FLOPs)
T EN-DE EN.FR _ENDE  ENFR
Deep-Ay + PosUnk (33 "

392 1.0-1p20
+RL (31) 246 0-10

GNMT
Chtv3oe &) 39.92 23-10" 14.710%
MoR o8 gg.&g 40.46 9.6-10'® 15.7109%
— 0K . 40.56 2.0 - 1019 + 1020
gcep-An + PosUnk Ensemble 404 10 513(23 . :g
CmIWI’l‘VS % l;. Ensemble (31] 2630 4116 18.10% 7.7
e semble (§) 2636 4129 7.7-10° 19.102
sformer (bfisz model) 273 38.1 3.3-10'8
_ Transformer (big) 284 4L0 2.3-10%
Label

t i cmployedilabel smoothing, of value &5 = 0.1 [30). This
hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score,

6 Results

6.1 Machine Translation

pn the WMT 2014 English-to-German translation task, the big transformer model (Transformer (big)
in Table[Z) outperforms the best previously reported models (including ensembles) by more than 2.0
I_BLEU_, establishing a new state-of-the—gr! BLEU score 0f 28.4. The configuration of this model is

surpasses all previously published models and ensembles, at a fraction of the training cost of any of
the competitive models.

On the WMT 2014 English-to-French translation task, our big model achieves 2 BLEU score of 41.0,
outperforming all of the previously published single models, at less than 1/4 the training cost of the
previous state-of-the-art model. The Transformer (big) model trained for English-to-French used
Farep=0.1, instead of 0.3,

For the base models, we used a single model obtained by averaging the lastSicheckpoints, which
were written at lﬂ-uxe intes Far th bi ms. we av i

1put leng .,..1.\..‘ but terminate early when possible (31].
:'Thﬂe@smmmmmrmlwandmmpmmrmﬂaﬁonquﬂhymmmngmmmomamndd
architectures from the literature. We estimate the number of floating point operations used to train a
model by multiplying the training time, the number of GPUs used, and an estimate of the sustained
single-precision floating-point capacity of each GPUE]

6.2 Model Variations

i i i 1
To evaluate the importance of different components of the Transformer, we varied our base mode!
in different ways, measuring the change in performance on Fn_ghsh.{n-(iermap translation on the
development set, newstest2013. We used beam search as described in the previous section, but no
checkpoint averaging, We present these results in Table[3]

i i alue dimensions,
In mws(A),wevaryﬂlcnumhuofaﬂcnunnhmds_andl_hcaneqm andv’ _
keeping the amount of computation constant, as described in Section While I:naglse-head
attention is 0.9 BLEU worse than the best setting, quality also drops off with oo many ;

$We used values of 2.8, 3.7, 6.0 and 9.5 TFLOPS for K80, K40, M40 and P100, respectively.



metri OTmer archj ;
Vo are op . lecture, Up) N
peg;ll‘-nncs are per.y, p?x Eng}:sh-_lonm,, tra 1sted values gre identical to those of the base
Per-worgd Perplexities, ¥ according g our byte-pair encodi ‘P'wdllmm, newstest2013. Listed

---_"-'—-_._
N q
Emm

———
& 501 254 60
4 611 237 36
ol ® s 253 5
© 88 255 80
=) 2 3, 575 245 23
o0 128 128 466 260 168
405 512 254 53
T T lam %
0.0 597 246
®) 02 495 255
0.0 467 253

0.2 547 257

0_3) positional embedding instead of sinusoids 4:92 25:7
big | 6 1024 4096 16 03 300K | 433 264 213

7 Conclusion

In this work, we presented the Transformer, the first scquence transduction mode] based entirely on
attention, replacing the recurrent layers most commonly used in encoder-decoder architectures with

multi-headed self-attention,

For translation tasks, the Transformer can be trained significantly faster than architectures based
on recurrent or convolutional layers. On both WMT 2014 English-to-German and WMT 2014
English-to-French translation tasks, we achicve a new state of the art. In the former task our best
model outperforms even all previously reported ensembles.

We are excited about the future of attention-based models and plan to apply them to other tasks. We
plan to extend the Transformer to problems involving input and output modalities other than text and
to investigate local, restricted attention mechanisms to efficiently handle large inputs and outputs
such as images, audio and video. Making generation less sequential is another research goals of ours.
The code we used to train and evaluate our models is available at [Bttps:77github. con/

rfl oL o
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