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machine conceptually implemenis the following idea: mpllvactmmdn; a" high-
ww:m hduﬁmemahummﬁmhmm Special properties of the
hi : bility,of the learning machine. The idea behind the suppori-vector
mkmpmmblmﬂemdmmmmcﬁmm&mgdmmumedmmom
errors. We heré extend this result to non-separable training data.
High generalization ability of suppori-vecior networks wtilizing polynomial input transformations is demon-
strated. We also compare the performance of the support-vector network to various classical leaming algorithms
that all took part in a benchmark study of Optical Character Recognition.

polynomial classifiers.

1. Introduction

More than 60 years ago R.A. Fisher (Fisher, 1936) suggcs:ed the first algorithm for pattern
recognition. He considered a mev'el of al distributed populations, N(m;, ;)
and N (m;, 3,) of n dimensional vectors x with mean vectors m; and m, and co-variance
matrices £y and X, and showed that the optimal (Bayesian) solution is a quadratic decision

IF,q(x)= [(x m) 2 (x— .,.1)__(, my) 25 (x— m;)+ln}§2:]\(l)

In the case whereB; = 5, = ¥ thequadratic decision function (1) degenerates to a linear

To estimate the quadratic decision function one has to determine -9;9 free parameters. To
estimate the linear function only n free parameters have to be determined. In the case where
the number of observations is small (say less than 10 %) estimating o(n”) parameters is not
reliable. Fisher therefore recommended, even in the case of X; # X, to use the linear
discriminator function (2) with X of the form:

T=t54+0-0%, 3)

wtu:n:g is some constant! Flsh& also recommended a linear decision function for the
case whnﬂ: the two distributions are not normal. Algorithms for pattern recognition

‘T<fo,1] 7 |
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Figure 1. Ammwmmsmwmzmdmﬂmﬂ.mﬂlwm The
mﬂgdhwmﬁ:mbﬂsm&nﬁcm

beginning associated with the construction of linear deci-

sion surfaces. . )
In 1962 Rosenblatt (Rosenblatt, 1962) explored a different kind of learning machines:
: 'Ihepm:eptronconsislsofoannected neurons, wheréeach.
.a separating hyperplane, sO the perceptron as a whole implements a
ing surface. See Fig. 1. BerForE
imizes the ex opTIMIZERS

inimizes the emroron a set of vectors by adjusting all the weights of
in Rosenblatt’s time, and Rosenblatt suggested a scheme where only
i adaptive. According to the fixed setting of the other
weights m@ummmmmndmhmmz , of the last
layaofmi& In lhisspaceaﬁmrdecisionﬁmcﬁon is constructed:

RasEuerI'; LINEAR
Ix) = sign (Z t!m(x)) @

DgelSioN FuncT (oM M
PeRcepTRONS
byadjustingthewcigmsa,- ﬁmnthciﬂlhiddcnunitmlheoutptnunilsoastouﬁninﬂzcsomc
error measure over the training data. As a result of Rosenblatt’s approach, construction of
“Wmlﬂm again associated with the construction of linear hyperplanes in some

LIKE ADNA

space.
An algorithm that allows for all weights of the neural network to adapt in order locally to
ition problem was found

minimize the error on a set of vectors belonging to a paitern recognl
in 1986 (Rumelhart, Hinton & Williams, 1986, 1987; Parker, 1985; LeCun, 1985) when the
vback-propagation algorithm was discovered. The solution involves a slight modification
of the mathematical model of neurons. Therefore, neural networks implement “piece-wise
linear-type” decision functions.
In this article we construct a new type of learning machine, the so-called support-vector
network. The support-vector network implements the following idea: it'maps the input
{phm'npi:i-. In this space a linear decision surface is constructed with special propenié

that ensure high generalization ability of the network.

—_-
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Figure 2. An cxample of a separable problem in a 2 dimensional space. The support vectors, marked with grey
mm&ﬁmhmdmmmﬂzlwm

ing to a polynomial ofidegree two, onc

icoordinates of the form:
Z] =Xy -9 Zn =Xn» n coordinates,
Zp41 =1|2,--..Zzn =I,3. n coordinates,
n(n—1) .
Z2n41 = X1X20 -2 ZN = KnXn-1: ( 3 coordinates,

where x = (x1, - -+ Xa)- Thehypﬂplaneisthcnmnstmctedinthiss;uacc.

Two problems arise in the above approach: one conceptual and one technical. Thecon= RSE
\weptual mi to find a separating hyperplane that will generalize well: the dimen- o
sionality of the feature space will be huge, and not all hyperplanes that separate the training =y
data will necessarily generalize well?. The technical problem is how computationally te DimensionAuT(
(treat such high-dimensional spaces. 10 construct polynomial of degree 4 or 5 in a 200
‘dimensional space it may be necessary to construct hyperplanes in a billion dimensional

feature space. SAELER
The conceptual part of this problem was solved in 1965 (Vapnik, 1982) for the case of
\@ptimal kyperpian for separable clas§es. An optimal hyperplane is here defined as the

linear decision function with maximal margin between the vectors of the two classes, see
Fig. 2. It was observed that to construct such optimal hyperplanes onc only has to take into
account 2 small amount of the training data, the so called support vectors, which determine
this margin. It was shown that if the training vectors are separated fwi ithout errors|by an
optimal hyperplane the expectation value of the probability of committing an error on a test
example is bounded by the ratio between the expectation value of the number of support
vectors and the number of training vectors:

E xPECTATION of £RRoR
/s RoumbED BY THE

SUPPORT UECTORS

E[number of support vectors]
number of training vectors

&)

E[Pr(error)] <




(5) for a real life problems
well in a billion dimensional fmhe asmlow mmd the optimal hyperplane gencralizes

Let
OPTIMAL
Fo-z + by =01 HYPERPLAS E

betheOPUmalhypuplancmfeﬂuespau:. Wewﬂldnw thallhe
°Pt1mal hyperplane in the feature space Eafiben - as some linear cor

DeFiniTioN oF
| HYPERPLAVE WEIFHTS  (6)

The linear decision function / (z) in the feature space will accordingly be of the form:
! LINEAR

PDECListaN
-z+bn). FumcTion (1)

where z; - z;stln“dot-pndmbetwemmpputw:twu. and vectorz in feature space. The
decision function can therefore be described as aitwo lay ik (Fig. 3).

However.evmnfthcopﬂnnlhypaplancgmalmwdllhcﬁéchmca] problem of how AgaV, curse or
to treat hlghdrmensmnalfeaunespaoemmmns Inl992nwasshown(Boser Guyon D imavs iowndi 17

lowed by. with support vectors in feature space, one can first compare two
vectors in input space (by ¢.g. taking theiridot-product or some distance measure), and

then make amn—linw trmsfmmamn of the value of the result (see Fxg 4) Thls en- Boyuesal

DggysjoV

mm dugm& WCWIH call this lype of le:m:mg machine a s suppon-vector };%CEFSS IN

The technique of support-vector networks was first developed for the restricted case of
\separating training data without errors. In this article we extend the approach of support-
vector networks to cover when separation without error on the training vectors is impossible.
With this extension we consider the support-vector networks as a new class of learning
machine, as powerful and universal as neural networks. In Section 5 we will demonstrate
how well it generalizes for high degree polynomial decision surfaces (up lo__gggl)_m a
\high dimensional space (dimension 256). The performance of the algorithm is compared
to that of classical learning machines e.g. linear classifiers, k-nearest neighbors classifiers,
and peural networks. Sections 2, 3, and 4 are devoted to the major points of the derivation
of the algorithm and a discussion of some of its properties. Details of the derivation are

relegated to an appendix.



la%!*.uf

277
4
|
Classification
Support vectors z
in feature space
THI s o W
CLEVER
ﬁ - input vector in feature space
non-linear transformation
input vector, X _
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Figure 3. mw:w-wmammmhmmuydmﬂ_byﬁmm-
forming the patiern into some high-dimensional feature space. Anq_:im-lhyprplnemnsmnmlmrlﬁsfemrc
space determines the output. The similarity to a two-layer perceptron can be scen by comparison to Fig. 1.

2. Optimal Hyperplanes

In this section we review the method of optimal hyperplanes (Vapnik, 1982) for Sgparation
‘of training data without errors. In the next section we introduce a notion ofisoft margns,
that will allow for an analytic treatment of learning with errors on the traiing set.

2.1. The Optimal Hyperplane Algorithm

The set of labeled training patterns SET oF

— | LABELED
Onx), .- %), i €{=11} | PATTERNS  (8)

N
WET) - T RiAS
is said to be linearly separable if there exists aweetor w and ascalar b such that the inequalities
- \/&Pui K ,
wxi+b>1 if y =1, CRITEREOM

. - FOR LINEAR
-x;+b< -1 if = —1, 9
i . a SEPERARILITY ®)
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classification
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Figure 4. Classification of an unknown pattern by a support-vector nefwork. The pattem is in input space
compared to suppon vectors. The resulting values arfjnon-finearly transformed. A lincar function of these
transformed values determine the output of the classifier. | , cq . \i6-£ u 1WDueiNG

MULTIPLERS Reto Now-LiveraiTT
are valid for all elements of the training set (8). Below we write the inequalities (9) in the
form*:
CrRITEREaN FoR |
e } xR =1, =1L (10)
SEPEM”-”'T' HIPERAPLANE
The optimal hyperplane pTIMAL

E\HTPEPPM“E a1

is the unique one which separates the training data with #{maximal margif; it determines
the direction:w/|whwhere the distance between the projections of the training vectors of
‘two different classes is maximal, recall Fig. 2. This distance p(w, b) is given by

MAXINAL MARFY X-W X-W
BETWEEN TWo-CLkSS ;r:'(w.i'r)=hlr:r;i_lu”——lwr = p = (12)
ProIEcTIONS e o

The optimal hyperplane (wyp, bp) is the arguments that fnaximize the distance (12). It follows
from (12) and (10) that
MAXIMAL MARGFIN
OF OPTIMAL

(13)
HY PERPLANE




Y | ‘

we show that the vector wy that Joie. = 1 will be term
= & VEC ﬁ-lald - = T
combination of traj .l'lg vo .mu]cm

/ Vectors x; for which y; (w-x;+5) =

DeFINITIa N OF
Y EcTOR THAT DETERMIVES

¢
> Wo=§)’i¢!;°!é. oPTINAL WPeepLh vE (14)

i 'ﬂUEwhcrc‘ao i
nitsz 0. Sincca > 0 only for support vectors (see Appendix), the expression (14)
lqn‘ esents a compact form of writing wy. We also show that to find the vector of parameters

;i
yECTOR 0F
Ag:(ﬂ?....,‘!?)' PN
one has to solve the followin i ing problem:
padratic programming pr = muLATIeN

WHERE DoESs [ : QUADRKT™™
THIS cCoME W(A) = AT1— 2ATDA \FoR SVN (15)
FRoM7 -

with respect w subject to the constraints:
nezuich

(16)
e STRAINTS a7

is an £-dimensional unit vectori¥= = (== Ve is the £-dimen-
and D is a symmetric £ x £-matrix with elements

E‘Fy,.yj,,..,;\ ol il ()

(16) describes the nonnegative quadrant. We therefore have tdmaximize th

The incquality I
. . (15) in the{iioi ive/giiadrant, subject to the constraints (17).

* When the training data (8) can be separated without exrors we also show in Appendix A
the following relationship between the maximum of the fonctional (7RIS

and the maximal margin gy from (13):
FupeTiovA L AND

THE ANG e (19)
MPR‘?’“‘ ‘Po

wherefll® = (Li=k
sional vector of labels,

If for some: A, and large constant Wp the inequality

is valid, mccanmdinglymmataﬂhypuplmsdmmmthcminingdamw)
have a margin

< [=
P Wo
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If the trainin
g2 set (8
ok i tos ge)cocannotbc
tmlﬁl'lg ﬂﬂ)i‘m-y .'""‘":I?i""'.',';..'"-"'o:: mall I‘mllinginlhe 3
large. Mariat : value of the functional W (A)
°‘!elhmr0re emmh:l:mms 'hef_“m'fonﬂ (15) under constraints (16) and (17)
with the maximal margin Po).ormm'ﬁ”" (in this case one has constructed the hyperplane
constant Wy (in which case a ndsol:mllwmnmmucwdsmcgjm(lngc)
V2] Wy is impossible). scparation of the training data with a margin larger then
The L. ;
very oJRvs o Etisising Renciitl {1 X}tk ctvstiot (16) and (17) can be solved
. ly using the following scheme. (Divide: thetrai a into a number of
sy . small number of training vectors :
= mf; quadratic programming problem determined by the first portion of training data.
o problem there are two possible outcomes: either this portion of the
separ ated by a hyperplane (in which case the full set data as well cannot be separated),
or the optimal hyperplane fi ' f the training data is found.
Let the vector that maximizes fanctional (15) in the case of separation of the first portion
MAI-MORS}hcmdinawsofm A, some areggual to Zero,
Son-support e this portion. Make a 0
the support vectors from the first portion of traini ing data and the vectors of the second
portion that do not satisfy constraint (10), where w is determined by A;. For this set a
sl functional W,(A) is constructed and maximized at A;. Continuing this process of
incrementally constructing a solution vector A, coverin ga!lmeporﬁonsofmen'aining
data one cither finds that it is impossib| le to separate the traini ing set without error, or one
mmmmmeopumﬂsqlmmmpﬂplmfm’ﬂlefuﬂdmasek=§o Note,_that

onemaywm!loseparalethsuainingselwilhé
fmﬂylﬂmmmmwmﬁ s Orb=iveh
We can now minimize the functional

gt

ima I:I—l'— 0

AN 1 2E
THE EuncTioNa | (21)

for small o > 0, subject to the constraints

foserioN yilw-x;+b) =15, i=1,...,¢ (22)
ConSTRAL £ >0, i=1,....L (23)
L
For sufficiently small o the functional (21) describes the number of the training errors’.

Minimizing (21) one finds some minimal subset of (rAININE EITOLS:

s X ) - - -+ (s Xic)-



Miim 2
THE
FONCTIoN AL (24)
subject to constraj : _ ak< ¢
et to. onstraints (22) and (23), where F(u) is #OROIORIOEBAVEX function and C is

F -
uﬂm?;j:zﬂiﬂ?:nuy l.mge C and sufficiently small o, the vector wo and constant bg, that
i functional (24) under constraints (22) and (23), determine the hyperplane
minimizes the number of errof on the training set and separate the rest of the elements

with maximal margin.

Note, however, that the problem of constructing a hyperplane which ‘minimizes the,
number of errors on the training set is in general NP-complete. To avoid NP-completeness MoNUMENTAL
of our problem we will consider the case of o = 1 (the smallest value of o for which 'OEA ™
the optimization problem (15) has a unique solution). In this case the functional (24) STecHASTIC
d’r‘_"-ﬂbﬂs (for sufficiently large C) the problem of constructing a separating hyperplane DEcisbM
which minimizes the sum of deviations, £, of training crrors and maximizes the margin T H=0 <<
for the correctly classified vectors. If the training data can be separated without errors the

constructed hyperplane coincides with the optimal margin hyperplane.

€ Incontrast to the case with o < I there exists an efficient method for finding the solution
A of (24) in the case of o = 14 Let us call this solutiodi#he soft margin hyperplane.
bor¥ 6= In Appendix A we consider the problem of minimizing the functional

1 I SAME AS_\
—w!+CF . ) |ean. (24 (25)
2 (,zf) wWHERE 67 =1

subject to the constraints (22) and (23), where F (1) is a monotonic convex function with
F(0) = 0. To simplify the formulas we'only describe the case of F(#) = u? in this section.
For this function the optimization problem remains a guadratic programming problem.

In Appendix A we show that thegiectoris, as for the optimal hyperplane algorithm, ¢an.

y i 1] ]

_ |vecToR
’ ‘i DE@:}H@,SJ?'M:\J

To find the vector AT = (q, . .., &) one has to solve the dual quadratic programming

problem of maximizing
. 5 ~1 MAUM:E:\;'!C)N
W —AT1— 2| AT 9" | VFupcTioM FOR
l (A8)=A"1 2[.& DA + C] \va:rok of (26)
subject to constraints . FAQ_METERS
ATY =0, |CossTRANTS FOR 27
MAXIM 2 ATION (28)

(29)



wheregdd VALY, and D are
uci — ““:amee!mmasmediumeopﬁmaﬁonpmhm for
equalities. anciyis a scalar, and (29) describes coordinate-wise in-

Note that (29) impl;
(29) implies that the smallest admissible value 3 in functional (26) is
-“MMMW —

ore to find  soft margin classifier one has to find a vector A that maximizes

MNMagmR™N FN. rEQN (26)
FoR PARAMETERS [_W(A)\:AH - %[ATDA+ %] AS A FuoF  (30)

- LIS
under the constrain D and (27). This em differs from the em of constructi
an optimal margin fasse : ; o -

= . uonlybylhcm llgy_lwnhgngm:_ml;@'ongl(Ml
ue to this term the solution to the problem of constructing the soft margin ™
unique and exists for any data set.
'T_‘hc functional (30) is not quadratic because of the term With @max- Maximizing (30)
subjcct.tol.hcconslninm.ﬂ zoand(zﬂbelongsmmeg;wpofmcaﬂedmnmpro-
gramming problems. Therefore, to construct a soft margin classifier one can cither solve
ﬂwm-mmﬁngmbhminthet-dimionalqniofmcm
can solve mmﬁc-mmnﬁngmhkminlhcdml!%{sbmoﬂhd rameters A
and'8; In our experiments we construct the soft margin hyperplanes by solving the dual
quadratic programming problem. |, ) sT Apg THE PRAS AND Bt o

<

4. TheMdhodofConmhﬁnnofﬂleDnl-PmdndinFMSpace

Thealgm-iﬂunsdesaibedind\epmvioussecﬁons construct hyperplanes in the input space.
To construct a hyperplane in a feature space one first has to transform the n-dimensional
[input vector x into an N-dimensional feature vector through 2 choice of an N-dimensional

vector function ¢: iNPUT TO FERTV RE N,
l b B = mN_}TRp,NSVDRMP\TfO'J rungo
: Tiod of
An N dimensional\linear se and a'bias b\is then constructed for the set of :‘:sz;[;’; € BIASES

transformed vectors
ResuiTivG =1

CEPERTURE [ p(x) = @1 (xi), o (i), - BN (), | = L.t
veeTO®S e L

Classification of an unknown vector X is done by first transforming the vector to the sepa-
(rating space (x — ¢(x)) and then taking the sign of the function
CLA g IFIcaTION
f(x) =w-p(x)+b. H‘YPERPL‘}\JE (31)

According to the properties of the soft margin classifier method the vector w can be
written as a;anﬁnﬂim of support vectors (in the feature space). That means

SuppoRT VECTOR
DECOMPORITION (32)
o WO

7
w= Z yictigp (x;)-



" SUPPORT-VECTOR NETWORKS

The linearity of the do-, o
unknown vector x only dmprmd : (:nﬁ]m‘ that the ¢

CLASSIFICATION
FuMeTioN  (33)

) =¢(x)-w+b=

L
;y.-m(x) (%) + b.

The idea of constructing

of the do“'PfodUClina Support-vector ne

tworks comes from ideri
Hilbert space (A considering general forms

nderson & Bahadur, 1966):

| PoT PRavocT IV
HILBERT SPACE (34)

According to the Hj P -

i hmidt Theory (C :
fu Hilbert-Schmidt Theory (Courant & Hilbert, 1953) any symm¢
nction K (w, v), with K (w, ¥) € L,, can be ex oy ) /m

_-_-_-‘_--'___-_‘_"
() -¢(v) = K(u, v).
‘.--__-‘_‘-_-‘-_‘-‘_'—-—

€\ GENDECOMPoSITION

OF gyumeTRIC (39
FUreT120)

K(u,v) =) xgim)-¢;(v),

i=1

where A; € R and ¢; are eigenvalues and eigenfunctions

ey

"KE RNEL- DEFINEP
f K (u, v)¢;(u)du = m(vﬂ INTEGRAL

OGP ERATOR

of the integral operator defined by the kemel K (u, v). A sufficient condition to ensure that

(34) defines a dot-product in a feature space is that all the gigenvalues in the expansion (35)

itive. To guarantee that these cocfficients are positive, it is necessary and sufficient
, Thieorem) that the condition

CRITERI0 N FoR
€
f K (@, v)z(@)g(v)dudy > 0 PosmtrE, CoOEFfiL ENTS
) (MEReSRS THEDRE M)

is satisfied for all g such that

REQDIREMENT
[ Zadie < oo BounpED REQD
FoR PoSITIVE Co eRFICIENTS

“Functions that satisfy Mercer’s theorem can therefore be used as dot-products. Aizerman,
Braverman and Rozonoer (1964) consider a convolution of the dot-product in the feature
space given by function of the form
i CoNVoLLT 108 oF

K(u,v) = Bxp(—— - Vl) j DoT PRaDLLT FOR (36)

| KERNEL CHoicE

a

which they call Potential Functions.

However, the convolution of the dot-product in feature space can be given by any function
satisfying Mercer’s condition; in particular, to construct a polynomial classifier of degree
d in n-dimensional input space one can use the following function

PoLYNomIAL CLASSIFIER

K@ v)=@-v+ 1)’ For kgRPEL CHoICE (3T)
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Using different dOl"pmducls K(u,v

F : ) one can : i —
arbitrary types of decision surf: construct different learning machines with
' of these machines has a form (Boser, Guyon & Vapnik, 1992). The decision surface

¢ LINEAR DECOMPosITION
fx) = Ey,-afx(x.x‘), of DEclisiod SURFACE
i=1

where x; is the image of a < : .
vector in the feam:fspacc.mwm ok e R s g o st
‘T(') find Ih“: vectors x; and weights a; one follows the same solution scheme as for the
original qptimal marginclassificr or Soft margin classifier. The only difference is that
instead of matrix D (determined by (18)) one uses the matrix
PELISION
MATRI ¥

Dy = yiy; K (x;, x;),

5. General Features of Support-Vector Networks
5.1. Constructing the Decision Rules by Support-Vector Networks is Efficient

To construct a support-vector network decision rule one has to solve a quadratic optimization
problem:

pEctsioM RULE

! apTIM I ZAT oV

_ ATy Mar i_]
W(A)=AT1— > |ATDA+ |,

‘under the simple constraints:

where matrix

DEeIsioN
MATRIK
is determined by the clements of the training sct, and K (u, v) is the function determining
the convolution of the dot-products. = KERNEL. _
The solution to the optimization problem can be found efficiently byolving intermediate Ex° LORE
\Gptimization probléis determined by the training data, that currently constitute the support
vectors. This technique is described in Section 3. The obtained optimal decision function
is iques

Each optimization problem can be solved using any standard techniques.

Di; = yiy; K (xi. x;). B

5.2. The Support-Vector Network is a Universal Machine

CHANGE THE Bychanging the function K (u, v) for the convolution of the dot-product one can implement
LE RNEL different networks.



K —(u. d PoLYNomiAl-

Function machines with decision functions of the form

o= s S 2525

can be implemented by using convolutions of the

K(u,v) = exp[— Ju— vlz].

ol

RAPAL BASIS
FuncT oM

(GAUSS IAN
KERMEL
hthiscaselhesuppun—vmmmkmmhmewincmumbothm@m ; of the
approximating function and thegweights'y; . _ fmz\;ﬂ”
One can also incorporate a priori knowledge of the problem at hand by constructing . . - 5p¢
¥$pecial convolution functions, Support-vector networks are therefore a rather general class

of learning machines which changes its set of decision functions simply by changing the
form of the dot-product.

5.3. Support-Vector Networks and Control of Generalization Ability

To control the generalization ability of a learning machine one has to control two different
factors: the'error-rite on the graining data and the Capacity of the learning machine as
measured by itsyC-dimension (Vapnik, 1982). There exists 2 bound for the probability of
errors on the test set of the following form: with probability, 1 — n the inequality
ProsseiLi Yo

TEST Egpok l Pr(test error) < Frequency(training error) + Confidence Interval | (38)

is valid. In the bound (38) the confidence interval depends on the WCZdimension, of the
learning machine, the fismber of elements‘in the training s, and the value of niy,
The two factors in (38) form a trade-off: the smaller the VC-dimension of the set of
functions of the learning machine, the smaller the confidence interval, but the larger the
‘value of the error frequency.
A general way for resolving this trade-off was proposed as the principle of structural risk STRUCTURAL
minimization: for the given data set onc has to find a solution that minimizes their sum. MinimIZATION
Ofﬂ\”‘g"wn A particular case of structural risk minimization principle is the{Occam-Ra r principle:
Prineifie i!mepthcﬂmttﬂmeqmlmmandmmmzcthcswundm

It is known that the VC-dimension of the set of linear indicator functions

INDIcATO R
f:(x)=sign(w-x+b). x| < Cs 5"‘ OEAA ?

FuncTloNS
with fixed threshold b is equal to the dimensionality of the input space. However,

the

VC-dimension of the subset
LINEAR |upicATeR
I(x) =sign(w-x+b), IKI<C, Iwj<Cy|2TH Bouko®? NoRM

oM WEIGHTS

VC-DiMENS 6N



. {of the input space and will depend on (.
Fmﬂ: lhl;pomt of view the optj margin classifier method executes an Occam-Raz
NCy - i
E:d i‘l:,;“ imizk::pﬂ!; the first term of (38) equal to zero (by satisfying th:.n inequality (93;
> second term (by finimizing the functional w-y). This minimizati
prevents an over-fitting problem. = »

However, ; i
mmmmmhmsdﬂmmsqﬂabkmmyobminbetwrc

- - L] - -
.mmﬂm&m b-’-m:mﬂ”mh?" in (38) even further at the expense of
E"““ : mmﬂm - soft margin classifiermethod. this can be done by choosing
*control the trade-ofT bet i C & lhc‘ it s i
e . ween complexity of decision rule and frequency of error by changing
parameter C, even in the more general case where there exists no solution with zero

exror on the lminip_gsaL Therefore the support-vector network can for
generalization ability of the learning machine.

6. Experimental Analysis
Todmmmmwmcstm-mndwaknwﬂmdwecmdlmwotypesofcxpcﬂmcnts.
We construct artificial suso{panuuinth:plamandcxpﬂimlwiﬂl‘mmpoly—

pomial decision sutﬁws,mdwtmndmtuperimlxwilhﬂ:ereal—lifemblem of digit
recognition.

6.1. Experiments in the Plane

Using dot-products of the form

PoLYNeMIAL
Km,v)=(@-v+ 1| [CERNEL (39)

with d = 2 we construct decision rules for different sets of patterns in the plane. Results
ofﬂnseexpeﬁmmcanbevisualuedandpmvideniceiﬂmﬁons of the power of the

Figure 5. Examples of the dot-product (39) withid = 2. Support pattems are indicated with double circles,
errors with a cross.

= TRAN NG SET
TrRADE-OF &
PARAMB TR R
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Fi
igure 6.  Examples of patterns with labels from the US Postal Service digit database.

bullets. In indi
the figure we indicate support patterns with a double circle, and errors with a

cross. The'solutions art i -
solutions in the sense that no 2nd degree polynomials exist that make

less errors. Notice that the numbers of support patterns relative to

S CoMF’UT)\TIoNN’]"f
o the number of traiming

VIRBLE
6.2. Experiments with Digit Recognition

Our cxperiments for constructing suppon-vwmrnctworksmkr.meoﬂwo different data-
bases forbit-mappe ‘digitmvogniﬁmagnllandwmm The small one is aUS
Postal Service database that contains 7,300 training pattemns and 2,000 test patterns. The
resolution of the database is 16 x I6pixcls,a:dmmetypia! examples are shown inFig. 6.
Onlhisdmahascwemmupuimmmlmchwim\pdynﬂuﬁﬂlsofvaﬁouﬁ .

The large database consists of 60,000 training and 10,000 test patterns, and is a 50-50
mixture of the NIST/ trainingandtestse!s-'[hemoluﬁonofmesepammsis 28 x 28
yielding an input dimensionality of 784. On this database we have only constructed a 4,
iicgrmpolynomialdnssiﬁ. Thcpafo:manmofthisclassiﬁuiswmpam:ltoomertypes
of learning machines that took part in a benchmark study (Bottou, 1994).

In all our experiments ten separators, one for each class, are constructed. Each hyper-
surface makesuscoflhesamedm;mduﬂmdpm-pming of the data. Classification of
an unknown patterns is domaccmﬂingtothcmaximumoulpnofthesemnclassiﬁcrs.

6.2.1. Experiments with US Postal Service Database.  The US Postal Service Database
hasbcmrecwdcdﬁomaamlmﬂpiwesandmum&omdﬁsdmabasehavebeenmponed
by several researchers. In Table 1 we list the performance of various classifiers collected

Table 1. demﬁs@&mm-ﬂmm For references
see lext.

Classifier Raw error, %
Human 2.5
Decision tree, CART 17
Decision tree, C4.5 16
Best 2 layer neural network 6.6

Special architecture 5 layer network 5.1
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Table 2. Res
. ' ults obtained f
IS a mean valge ed for dot products of polynomi :
per classifier Polynomials of varions degree. The
5 - number of “suppont vectors”

Degree of Ra
polynomial m?'% f:g: Di;:ln':l:naliry of
space
:lz g it 256
3 a 127 ~33000
4 a4 148 ~1 x 106
5 43 165 ~1 x 10°
p 43 175 ~1 x 102
7 %ia 185 ~1 x 10
3 190 w10,

h

LT;I:ID gll.l.:ll:]:auils and own experiments. The result of human performance was reported
K '.ed ey & E. Sacklpgcr (Brom!cy & Sackinger, 1991). The result with CART was

arried out by Daryl Pregibon and Michael D. Riley at Bell Labs., Murray Hill, NJ. The
results of ?4.5 and _rhe best'2-layer neural netwiik (with optimal number of hidden units)
were obtained specially for this paper by Corinna Cortes, and Bernard Schoelkopf respec-
tively. 'I'I.w, result with a special purpose neural nctwork architecture with 5 layers, LeNetl,
was obtained by Y. LeCun et al. (1990).

Natal ,—:-:_:'-:-_'f—i' n

QP

Qn the experiments with théjlUSiPostal'Service Datz used pre-processing (cen-
tering, de-slanting and smoothing) to incorporate knowledge about the invariances of the
problem at hand. The effect of smoothing of this database as a pre-processing for support-
vector networks was investigated in (Boser, Guyon & Vapnik, 1992). For our experiments
we chose the smoothing kernel as a Gaussian with standard deviation o = 0.75in agreement
with (Boser, Guyon & Vapnik, 1992).
In the experiments with this database we constructed polynomial indicator functions
based on dot-products of the form (39). Therinput dimensionality was 256) and the order
of the polynomial ranged from 1to 7. Table 2 describes the results of the experiments. The
training data are not linearly separablé:
" Notice that the number of supportivectors increases. very slowly. The 7 degree polyno-
mial has only 30% more support Vectors than the 3rd degree polynomial—and even less
than the first degree polynomial. The dimensionality of the feature space for a 7 degree
polynomial is however 10'° times larger than the dimensionality of the feature space for
a 3rd degree polynomial classifier. Note that’performance almost does not change with
lincreasing dimensionality of the space—indicating no over-fitting problems.

The relatively high number of support vectors for the linear separator is due to non-
separability: the number 200 includes both support vectors and training vectors with a non-
zero £-value. If§ > 1 the training vector is misclassified; the number of mis-classifications
on the training set averages to 34 per classifier for the linear case. For a 2nd degree classifier
the total number of mis-classifications on the training set is down to 4. These 4 patterns are

shown in Fig. 7.

It is remarkable that in all our experiments
when we consider the number of obtained support vectors instea
of this number. In all cases the upper bound on the error probability fo
does not exceed 3% (on the test data the actual error does not exceed 1.5% for the single

classifier).

the bound for generalization ability (5) holds
d of the expectation value
r the single classifier
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I
Figlﬂ! 7. thﬁled 4 4 8 5
& set for the 2nd degree polynomial s ;
upport-vector classifier,

The training
aining ume for construction of polynomial classifiersgloes:not dépend ¢
faster than th - n.l y the number of support vectors. Bveni iti
(LeCun, eta), t;esggot };cr{;?ung Hesel e i SNy re= the task. LeNet1
- . 3 ' performance of thi &
mials with degree 2 or hi gher outperform LeNse:EUHI eAwOrk 131w eamor. Polyme-

6.2.2, Expem ;
i i Conducledn;f- ;t;:s!th; iﬂsnaﬁbalsa The NIST database was used for benchmark
of 1 type of classifer for wiich v ;:h c lr:m'.d time frame cnqbled_only the construcpon
O thsion sk » Chose 44t degree polynomial with no pre-processing.

ol was ased on our experience with the US Postal database.

able 3 lists the number of support vectors for each of the@0 classifiers and gives the

performance of the classifier on the training and test sets. Notice that even polynomials
of degree 4 (that have more than@i0BHiffée parameters) commit errors on this training set.
The average frequency of training errors i 48s. The 14 misclassified test
patterns for classifier 1 are shown in Fig. 8. Notice again how the upper bound (5) holds
for the obtained number of support vectors.

The combined performance of the ten classifiers on the test setdsil. 1% emor. This result
should be compared 1o that of other participating classifiers in the benchmark study. These
other classifiers include a linear classifier, 8 k = 3-nearest neighbor classifier with 60,000

\prototypes, and two neural networks specially constructed for digit recognition (LeNetl

and LeNetd). The authors only contributed with results for support-vector networks. The
results of the benchmark are given in Fig. 9.
We conclude this section by citing the paper (Bottou, et al., 1994) describing results of

the benchmark:

For quite a long time LeNetl was considered state of the art. ... Through a series

of experiments in architecture, combined with an analysis of the characteristics of

recognition error, LeNet4 was crafted. . ..

The support-vector network has excellent accuracy, which is most remarkable, be-

cause unlike the other high performance classifiers, it does not include knowledge
Tuble 3. Results obtained for a 4th degree polynomial classifier on the NIST database. The size of the training
set is 60,000, and the size of the test sel is 10,000 patterns.

cLo a1 €2 (€3 a4 QG5 c.6e cL7 CL8 CL9

supp.pu. 1379 WOB9L 1958 1900 124 2024 1527 2064 2332 {2765

Error train 7 16 8 1 2 4 8 16 4 1
Ervor test o @ 3 33 % o 2R 8 08 g 63
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Figure 8. The 14 misclassified test i
; patterns with labels fi i ; e >
Btaras stk ottier tabels ab & oy or classifier 1. Patterns with label *[” are false negative.

I (Y| I
crror
- i i 5
84
4
1o+ =4
1.7
o |
lincar k=3-ncarest leNetl [eNetd SVN

classihier neighbor

Figure 9. Results from the benchmark study.

problem. In fact the dlassifier would do as well if the

about the geometry of the
e.g. by a fixed, random permutation.

image pixels were encrypted

The last remark suggests that further improvement of the performance of the support-

vector network can be expected from the construction of functions for the dot-product
@mﬂmmam ori informationabout the problem ‘at hands,

7. Conclusion

This paper introduces the suppori-vector network as a new learning machine fof two-group

Elassification problems.
The support-vector network combines 3 ideas: the solution technique from optimal hy-
erplanes (that allows for an expansion of the solution vector on support vectors), the idea of
‘convolution of the dot-product (that extends the solution surfaces from linear to non-li near)'.

and the notion ofisoft margins (to allow for errors on the training set).
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gorithms. Despite the simplicity of the g pared to the performance of other classical al-

exhibits ayerysfine performance i &0 1n its decision surf
= . ein th . ace the .
Other characteristics like capacity CE:;’::I'P&!‘ISOTI study. new algorithm

and ; :
surf xcid render the support-vector network ant et O.fchan.gng the implemented decision
“ machine. extremely powerful and universal learning

A. Constructing Separating Hyperplanes

In this appendix we derive b
. oth . )
margin hyperplanes. the method for constructing optimal hyperplanes and soft

A.1.  Optimal Hyperplane Algorithm

It was shown in Section 2, that to construct the optimal hyperplane

. —q |0PTIMAL
i b ”’b"_jo' HYPERPLAVE "

which separates a set of training data

SET aF
(y]lxl)v ey ()'t:xf)v ‘TR;:LSW WA

Fuucm"’"-
O=wW-W \1po MAXIMZE

one has to minimize a functional

subject to the constraints

FuMeTONAL
CoNSTRAVD Yf(xf-W+b)zl.S i=1,...,¢L (41)
To do this we use a standard optimization technique. We construct 2 Lagrangian
_________..--—"—"'-"'-_
L AGRANGARN 1 ¢
ConcTIONAL | Lw b A)=3%"" " 3 ailyi(xi - w4+ — 11 (42)

i=l

oPTIMI ZeTIoD
where‘d&,-_._—-_g__,.._(qp o - 08) is théwectorof non-negative Lagrange multipliers corresponding of = ’>‘~

to the constraints (41).
It is known that the solution to the optimization problem is determined by thelsaddle point
of this Lagrangian in the 2¢ + 1-dimensional space of w, A, and b, where the minimum
should be taken with respect to the parameters wand b, and the maximum should be taken

At the point of the minimum (with respect ©0 W and ) one obtains:

__'-—--—-_.-.—_._'_—

£
M NimiZATION OF M = | wo— Z“‘y‘x‘) =0, (43)
LAGRANG-IAY wiTH dw =

i=l
REspeLT T0 -
WEIGHTS ~ BIASES i&‘%’é’ﬂ% =Yy =0. (44)
b=bp

o
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From equality (43) we derive

ipn MA L HY PERPLN—"E.
o; A LINENR conBIATAY 45
SUPRORT vELTORS )

which expresses, that th i
e optimal hyperplane solution can be written as a lin b
ear combina-

tion of training vectors. No
L . Note, that onl ini
contribution to the sum (45). e A b

Substituting (45) and (44) into (42) we obtain

PerormsiTioN | (o
OF (A)EI&HT5 [m A= Eai - Ewo + Wo (46)
peORT RS =
oSu \J ¢ A
UiA LAGRANE(fY = Zﬂi ‘EZZ““U)’U’J’* -Xj. (47)
1= i=1 j=1
In vector notation this can be rewritten a;_r gy
wEm.HTT; MO A
el 48
LIRS e

where 1 is an [-dimensional unit vector, and D is a symmetric £ X ¢-matrix with elements
SYMMETRIC MATRIX
EoRpwLATION

To find the desired saddle point it remains to locate the maximum of (48) under the

constraints (43)
HYPERPLAN &
conSTRNNT
where Y7 = (15 -+ - ye), and
RAGE

\ Az0. lzﬁwmo‘r

’Ihcﬂ{ﬁhn-'ﬁcﬁef?ihwréﬁplays an important part in the theory of optimization. Ac-
this theorem,’at our saddle point-in o b0, ﬂb,my_]_ggmngcmtﬁplia o and
i

cording 0 :
qts g constraint are connected by an Ko N-TeER
wilyi(x - wo+bo) — 11 =0 P10 | EQUATY
From this equality comes thahﬂn%ﬁﬁwﬂhes'd';"im-e only achieved in the cases where
£ L smpm:'rc»\'\'lo N

yi(x; - wo +bo) — 1=0. \ga@untTY

In other words: & # 0 only for cases were thé inequality is met as an egualit¥s We call

ectors x; for which
' sUPPORT VECOR
yi(xi - Wo+ bo) = 1 caLALL

for support-vectors. Note, that in this terminology the Eq. (45) states that the solution vector

wo can be expanded on support vectors.
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/ ‘5Uﬂdf
/ tion, based
observation, | on the Kuhn-Tuck
wl}umti on, is the relationship between the maximial ‘:ILE;T,U(“S) a:dth(45) for the optimal
s "(/\p) and the separation distance

ml

MaxiMizeD ConERAINT
WEIGHT AND SEPNRATIF
OISTANCE ¢

{
4
Wo W0 =) oYX -Wo= 0 :
;,‘ Y g“t(l')ﬂbu)=2a?.
i=1

Substituting this equality into the expression (46) for W (Ao) we obtai
n

t s == —
W(AU) i Zau - lw . _ Wo - Wp SIMPLUFACN oM ofF u]ﬁlﬁ-f'fr
i=1 i —pWorWo=""5"" MAXI M| ZATIOU
Taking into account the expression (13) from Section 2 we biai
OER VATION oF WEIGHT
ax|MIZATION AND oPTIMAL

; H NE
where py is the margin for the-optimal hyperplane. e

A.2. Soft Margin Hyperplane Algorithm

Below we first consider the case of F(u) = u®. Then we describe the general result fora

monotonic convex function F(u).
FONTIONAL-TO ; .\
MAX| MIZE ., k>,

nctional

GougTRhlUT 5

under the constraints
(49)

FoR
FAXTIONE - (50)

The Lagrange functional for this problem is ;
ToI INL (4% (30
LAGRRIGE Ty o
L NCTIONAG +C }:Ef) _S it W+ b))~ 1 +&1- Y &, | BD
' i=1 i=1

where the non-negative multipliers AT = (1,00, -+ 5 «;) arise from the constraint (49).
., r;) enforce the constraint (50).

and the multipliers R = (r1, 72, -~
We have to find the saddle point of this functional (the minimum with respect to the

variables wi, b, and &i, and the maximum withi respect to the variables o; and 7).
Let us use the conditions for thé minimum of this functional at the extremum point:
MINIMIZE FUNCTIONAL

AT EXTREMA TR (52)
WE|GHT S
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MU (B FUNETIONAL
AT Biks EXRemA To

WNImZE FuNCTprAL il ooy
:r unk EXTREVRTo | BL | ¢\ ) >
oD g b2 P | Bilemge ~r (ZI E?) " 4
I=
If we denote |
DEFIVTIOL
Y- (i)‘*’ o of SUCK
s Ck \VARIABLES (55)
we can rewrite Eq. (54) as
—4_-1 StAck EXTREMa
§—a;—r; =0. | SIMPUFATEN (56)

From the equalities (52)~(55) we find

oM oF weleh
(&1
(58)
Substituting the expressio functional (51) we obtain
;‘D)E@LUWL% gh/E-1
e (1 - (59)

mize the form functional

ane solution oné has to maxi
variables i, Ti with

To find the soft margin hyperpl

(59) under the constraints (5T-58) with respect to the g_pn-mgative
s A In vector notation (59)canbercwriucnas
Fomgy LAIC
RRNTE/ ConPRESS! oN (60)
us\NG LG RATRY
where A and D are a8 defined above. To find the desired saddle point one therefore has 10
find the maximum of (60) under the constraints
Cm&STRMﬂTS Fox
OESIRED SAOLE (51
A+R=5L| o, (62)
POl T
A=0, (63)
and
R=0. (64)
R ot
From (62) and (64) one obtains that the vector A should satisfy the conditions
LARRANG AN i

CaNET RAINTS
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62 and
) (64) one can also conclude that to maximize (60
)

conditiOHS(
o
5 = ey = max(ay, ... a. CoNO(TION TO MAX/MIZE.
& pstituting this value of 4 into (60) we obtain e
FuwcnonNA\E 1
US ING themar- W) =A"1- [L\’DA+ i :
37O g 1~ il (66

o find the soft margin hyperplanc o
ne can therefi C e

gorm(51) under the constraints (61) and (6 ore cither find the maximum of the quadratié,
function(60) under the _ (65), or one has to find the maximum of th ;
- constraints (61) and (56). For the experiments reported i Sl

'Fusem = 2 and solved the quadratic programmi SemiS1) reported in this paper
or the case of F(u) = u the same techni i '
: _ SR 2 que brings us (o th :
following quadratic optimization problem: minimize ngw f:n :ﬁo :alpfoblcm of solving the
QUARRNTIC

under the constraints

and

from this technique- Thésoft margin

FuncTionAL
MAKIMIZATIC N

case of amonotone convex function F(u)can alsobe obtained

hyperplanéhas 2 form
soFT MAREY

HYPERPLNYFL
convex programming prob-

The general solution for the

wherepht="@ » -- - “a%yis the solution of the following dual
lem: maximize iof ColEX
FuNCT IONAL
under the constraints _
ochE-»i
Fonct” 1CMAE
cpusTQAl”"'S
where we denote HANOE N exX
M oRETAE aexion)
i i ing 1 ity 1 id:
otone functions F(u ) F(0) = 0 the following inequality 15 vali
For convex mon C,c.u\JEK e R
BEHAVOR
positive andgoes 10 infinity When Ofmax goes

Therefore thé second
1o infinity.

JArRx (M BRTEN



e can consider the hyperplane that min: -

 the form
l(“"”tel |QursriTic
2 i=1 i HYPERPLAGE

..t to the constraints (49)—(50), where the second term

for the :;rlors- This lead 1o the following quadratic i nimizes the least square value
functio

W) . 1 I MY M ZE
=A"1--|AT QUADRAM
: [A DA + EATA] b o

in the non-negative quadrant A > 0 subject to the constraint ATY =0

Notes

1. The / ﬂici&mfortwnfolmdinlhesinis(m&ﬂm,lm

2. Recall Fisher's Mmﬂlmmof@andﬂ:qmﬁcdkuiuﬁﬂﬁm.
3.

Wimﬂn:mmeweemphaﬁzchuwcmdﬂﬂniduufexpuﬂm;ﬂ:Manmhhu
Jearning machines. In the support-vectors learning algorithm the complexity of the construction does not
depend ondndirmnsiondityofﬂpfemembmmtr:mnﬂmafmppunmm.
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