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Abstract

Deep Neural Networks (DNNs) are powerful models that have achieved excel-
lent performance on difficult learning tasks. Although DNNs work well whenever
large labeled training sets are available, they cannot be used to map sequences to
sequences. In this paper, we present a general end-to-end approach to sequence
learning that makes assumptions on the sequence structure. Our method
i edLonig Short-Term Memory (LSTM) to map the input sequence
to a vector of a fixed dimensionality, and then er deep LSTM to decode the
target sequence from the vector. Our main result is that on an English to French
translation task from the WMT-14 dataset, the translations produced by the LSTM
BLEU core of 34. the entire test set, where the LSTM’s BLEU
as penalized on out-of-voc: lary words. Additionally, the LSTM did not
have difficulty on long sentences. For comparison, a phrase-based SMT system
achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM
to rerank the 1000 hypotheses produced by the aforementioned SMT system, its
BLEU score increases to 36.5, which is close to the previous state of the art. The
LSTM also learned sensible phrase and sentence representations that are sensitive
to word order and are relatively invariant to the active and the passive voice. Fi-
nally, we found that reversing the order of the words in all source sentences (but
not target sentences) improved the LSTM's performance markedly, because doing
so introduced many short term dependencies between the source and the target
sentence which made the optimization problem easier.

1 Introduction

Deep Neural Networks (DNNs) are extremely powerful machine learning models that achieve ex-
cellent performance on difficult problems such as speech recognition [13, 7] and visual object recog-
nition [19, 6, 21, 20]. DNNs are powerful because they can perform arbitrary parallel computation
for a modest number of steps. A surprising example of the power of DNN is their ability to sort
N N-bit numbers using only 2 hidden layers of quadratic size [27]. So, while neural networks are
related to conventional statistical models, they leamn an intricate computation. Furthermore, large
DNNs can be trained with supervised backpropagation whenever the labeled training set has enough
information to specify the network’s parameters. Thus, if there exists a parameter setting of a large
DNN that achieves good results (for example, because humans can solve the task very rapidly),
Despite their flexibility and power, DNNs can only be applied to problems whose inputs and targets
can be sensibly encoded with vectors of fixed dimensionality. It is a significant limitation, since
many important problems are best expressed with sequences whose lengths are not known a-priori.
For example, speech recognition and machine translation are sequential problems. Likewise, ques-
tion answering can also be seen as mapping a sequence of words representing the question to a




sequence of words representing the answer. It is therefore clear that a domain-independent method
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that learns to map sequences to sequences would be useful.
?&f&m i‘:‘&“ﬁ“&é f‘:’ DNNs because they require that the dimensionality of the inputs and
\Short _ xed. In this paper, we show that a straightforward application of thejliongh, | TSM
The ;aea!m' Memory (LSTM) architecture [16] can solve general sequence to seque ; Vi ﬂ
_The ideals to use one LSTM to read the input sequence, one timestep at a time, : d- [Fixeo VELTO
- dimensional vector , and then to use another LSTM to . ;
. th ‘(fig. 1). The second LSTM is essentially a recurrent neu network language moc ;
E 8,23, 30] except that it is conditioned on the input sequence. The LSTM'’s ability to successfully
::m on data with long range temporal d ne es it a natural choice for this application LTSM
e to the considerable time lag between the inputs and their corresponding outputs (fig. 1). [ExTRACT ouTRUT
There have been a number of related attempts to address the general sequence to sequence learning SEQUEMC'E:l
problem with neural networks. Our approach is closely related to Kalchbrenner and Blunsom [18]
who were the first to map the entirejinput sentence oy i i
Graves [10] introduced a novel differentiable attention mechanism that allows neural networks to
focus on different parts of their input, and an elegant variant of this idea was successfully applied
to machine translation by Bahdanau et al. [2]. The Connectionist Sequence Classification is another
popular technique for mapping sequences to sequences with neural networks, although it assumes a
‘monotonic alignment between the inputs and the outputs [11).

w X f z <E0S>
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Figure 1: Our model reads an input sentence “ABC” and produces «XYZ” as the output sentence. The
model stnpsmhngfcuons after outputting the end-of-sentence token. Note that the LSTM reads the
- input sentence in reve becmscdoingsoinuoduocsmnyshmmdependemiesinmcdmmnmakcmc
upmmmonprcblemmxchmu

The main result of this work is the following. On the WMT’ 14 English to French translation task,
we obtained a BLEU score of 34.81 by directly extracting translations from an ensemble of 5 deep
LSTMs (with 380M parameters each) using a simple left-to-right beam-search decoder. This is
by far the best result achieved by direct translation with large neural networks. For comparison,
the BLEU score of a SMT baseline on this_dataset is 33.30 [29]. The 34.81 BLEU score was
achieved by an LSTM with a of 80 ‘wu%“m so the score was penalized whenever the
reference translation contained a word not covered by these 80k. This result shows that a relatively
unoptimized neural network architecture which has much room for improvement outperforms a
mature phrase-based SMT system.

Finally, we used the LSTM to rescore the publicly available 1000-best lists of the SMT baseline on
the same task [29]. By doing so, we obtained a BLEU score of 36.5, which improves the baseline
by 3.2 BLEU points and is close to the previous state-of-the-art (which is 37.0 [9)).

Surprisingly, the LSTM did not suffer on very long sentences, despite the recent experience of other 1 =/ |
researchers with related architectures [26]. We were able to do well on long sentences because we TQ: g
mvusedthsmdaofwordsinthesmmcwntenceblnnotthetargetsentenccsinthetminingandtzst

set. By doing so, we introduced many short term dependencies that made the optimization problem

much simpler (see sec. 2 and 3.3). As aresult, SGD could learn LSTMs that had no trouble with

long sentences. The simple trick of reversing the words in the source sentence is one of the key

technical contributions of this work.

A useful property of the ESTM is tha it learns to map an input sentence of variable length into
a fixed-dime 1 vector representation. Given that translations tend to be paraphrases of the
source sentences, the translation objective encourages the LSTM to find sentence representations

“that capture their meaning, as sentences with similar meanings are close to each other while different
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Sentences meanings will be far. A qualitat: supports
i Iar. A qualitative evaluation is claim, showing model
suwmofwmﬂmderandlsfmﬂyinvmimtmtheaeﬁwlndpu::iic\]-:g. o

2 The model
4
g EnFEO?E
cocurrent Neural Network (RNN) [31, 28] is a natural generalization of feedforward neural COMPUTATISNAL-
networks to sequences. Given a sequence of inputs (5:1,...,3-7), a standard RNN computes a COMPLE*I‘T'I’

sequence of outputs (y,, . .. yr) by iterating the foll uation | =
y . T L' o)
AC.”V)‘\ 0 ;”'I-S

he = sigm (W™z, +Whth,_,) |TEMR
ViA SiGMollZ
The RNN can easily map sequences to sequences whenever the alignment between the inputs the

hose

mtputsishnownmdof' is not clear how to apply an RNN to

A simple strategy for general sequence leaming is to map the input sequ
B RN vnd (oo : is. _‘.,_p_.\

15 also been taken by Cho et al. [5]). While it could work in principle since the RNN is provided
with all the relevant information, it would be difficult to train the RNNs due to the resulting long
term dependencies [14, 4] (figure 1) [16, 15]. However, the Long Short-Term Memory (LSTM) [16]
is known to learn problems with long range temporal dependencies, so an LSTM may succeed in
this setting.

The goal of the LSTM is to estimate the conditional probability p(y1, .. .,

(z1,-..,2r) is an input sequence and ¥, . . ., Y7+ is its corresponding output
! ". . The L - ' al p ahili

|z1,...,zT) where

EQUENCe
g ==

LSTM, and then computing the probability of g, .., yz+ With a standard LSTM-LM formulation H/4/"
whose initial hidden state is set to the representation v of zy, ..., ZT!
fRom0CT oF

= CONDTIONAL
P, .- ¥rrlEn, -, 2r) = [[ prloswns - 1) (prnapiniTies @
=1

In this equation, each p(|v, 1, .- -, ¥e—1) distribution is represented with 4 softmaxiover all the

words in the vocabulary. We use the LSTM formulation from Graves [10]. Note that we require that

each sentence ends with a special end-of-sentence symbol ¥<EO0S>", which enables the model to

define a distribution over sequences of all possible lengths. The overall scheme is outlined in figure

1, where the shown LSTM computes the representation of “A”, “B”, “C”, “<EOS>" and then uses @ AyTOENCODE R
this representation to compute the probability of “W”, “X", “Y", “Z", “<EOS>".

Our actual models differ from the above description in three important ways. First, we used two Q["EEP M {'r’z.hfm)
different LSTMs: one for the input sequence and another for the output sequence, because doing

so increases the number model parameters at negligible computational cost and makes it natural to( 3} REVERSE WNfUT
train the LSTM on multiple language pairs simultaneously [18]. Second, we found that deep LSTMs SEUENCE oepel
significantly outperformed shallow LSTMs, so we chose STM with four layers. Third, we found

it extremely valuable to reverse the order of the words of the input sentence. So for example, instead

of mapping the sentence a, b, ¢ to the sentence a, 3,7, the LSTM is asked to map ¢, b,a to o, 3,7,

where a, B, is the translation of a, b, ¢. This way, a is in close proximity to a, b is fairly close to

8, and so on, a fact that makes it easy for SGD to “establish communication™” between the input and

the output. We found this simple data transformation tqmﬂyboostﬂupeﬂmnmee_of the LSTM.

3 Experiments

We applied our method to the WMT" 14 English to French MT task in two ways. We used it to
translate the input sentence without using a reference SMT system and we it to rescore the

" n-best lists of an SMT baseline. We report the accuracy of these translation methods, present sample
translations, and visualize the resulting sentence representation.



- b ¥ =

31 Dataset details
We used the WMT
tences consisting OFWMQMWILW We trained our models on a subset of 12M sen-
subset from [29]. We chose thi Is and'@04M English words, which is a clean “selected”
Pﬂbﬁcavﬁhbmtyofawwm:wmmmlnd&ﬁsspeciﬂctmi:ﬁngsetsubaubenmeofﬂw
SMT [29]. training and test set together with 1000-best lists from the baseline
As typical

neural language models rely on 0 ch word, we used a fixed

. of the most frequent words for the Every out-of-vocabulary word was

32 Decoding and Rescoring

The core of our experiments involved traini i
Pl SR training a large deep LSTM on many sentence pairs. We
trained it by maximizing the log probability of a correct translation T' given the source sentence S,

so the training objective is
B“-l‘r\{ oF W
1/1s| Y logp(T|S) R Sce CHUEL SaRoE
(T,5)es seQUEMCE

where § is the training set. Once training is complete, we produce translations by finding the most.,
“likely translation according to the LSTM: MAKMIZE Prof BILITY

T = argmaxp(T|S) | o WEXT TEEE W ()
We search for the most likely translation using a simple left-to-right beam search decoder which

mdnmipsasmanmmberBofpuﬁﬂhypuhwe&whwenparﬁﬂhypommsisapmﬁxofm
translation. At each timestep we extend each partial hypothesis in the beam with every possible
word in the vocabulz gtmﬂyinmmesthenumba‘ofthehypmheeasow' all bu

WB mnost like potheses, according to the model’s log probability. As soon as the “<BOS>"
__symbol is appended to a hypothesis, it is removed from the beam and is added to the set}omnplw
" hypotheses. While this decoder is approxi it is simple to implement. Interestingly, our system

performs well even with abeam size of and &beam of size 2 provides most of the benefits of beam

search (Table 1).

We also used the LSTM to rescore the 1000-best lists produced by the baseline system [29]. To
rescore an n-best list, we computed the log probability.of every hypothesis with our LSTM and took
an even average p'ith their score and the LSTM’s score.

18l
3.3 Reversing the Source Sentences

While the LSTM is capable of solving problems with long term dependencies, we discovered that REVERSE

the LSTM learns much better when the source sentences are reversed (the target sentences are not 5o Rc =
reversed). By doing so, the LSTM's test perplexity dropped from 5.8 to 4.7, and the test BLEU < . rpa NCES
scores of its decoded translations increased from 25.9 to 30.6. =

While we do not have a complete explanation to this phenomenon, we believe that it is caused by
the introduction of many, short term dependencies to the dataset. Normally, when we concatenate a
source sentence with a target sentence, each word in the source sentence is far from its corresponding
word in the target sentence. As a result, the problem has a large “minimal time lag” [17]. By
reversing the words in the source sentence, the average distance between corresponding words in
the source and target language is unchanged. However, the first few words in the source language
are now very close to the first few words in the target language, so the problem’s minimal time lag is
greatly reduced. Thus, backpropagation has an easier time “establishing communication™ between
the source sentence and the target sentence, which in turn results in substantially improved overall
performance.

Initially, we believed that reversing the input sentences would only lead to more confident predic-
tions in the early parts of the target sentence and to less confident predictions in the later parts. How-
wu,msmmmmmﬁdmmmmmmmaanms



trained on the raw source sente
mﬂmmmswimm;m@mg‘mhmwmmmmmm

il f1C wmfg

&w?&?hd&ﬂm e used a 0,00f e hmm

mm%ml‘ﬂ of which 64M are pure recurren onis (32M for the “encoder”
2M for the “decoder” LSTM). The complete training details are given below:

e We used batches Oﬁw‘ém - the gradi ”

. (namely, 128). =
e Although LSTMs tend to not suffer from the vanishing mdiemmblem.meymhmoﬂ!\m?m'
exploding gradients. Thus we enforce am‘%mmnm of the gradient [10, < LIPP/NGC
25] by scaling it when it§ng ded Mﬂ each training Eamh, we compute

@ s = ||g|l,,where g is the gradient divided by 128" 5wesetg=23.
o Different sentences have different lengths. Most sentences are short (e.g., length 20-30) CoMP u‘f?\ﬂw
but some sentences are long (e.g., length > 100), so a minibatch of 128 randomly chosen (W ZR/EA ¢ =
i senmnceswﬁﬂhuvemmyshmﬁnmandfewlongmandasamuln -

training
much of the computation in the minibatch is wﬁ'lb address this problem, we made
i y of the same length, which a 2x

3.5 Parallelization

A C++ implementation of deep LSTM with the configuration from the previous section on a sin-
Igle GPU processes a speed of approximately'1,700 words per second. This was (00 slow for our
purposes, so we parallelized our model using 2 achine. Each layer of the LSTM was
executed on a different GPU and communicated its activations to the next GPU (or layer) as soon
_as they were computed. Our models have 4 layers of LSTMs, each of which resides on a separate
'GPU. The remaining 4 GPUs were used to parallelize the softmax, so each GPU was responsible
for multiplying by a 1000 X 20000 matrix. The resulting implementation achieved a speed of 6,300
(both English and French) words per second with a minibatch size of 128, Training took about a ten

days with this implementation.

3.6 Experimental Results

We used the cased BLEU score [24] to evaluate the quality of our translations. We computed our
BLEU scores using multi-bleu.pl' on the tokenized predictions and ground truth. This way
of evaluating the BELU score is consistent with [5] and [2], and reproduces the 33.3 score of [29].
However, if we evaluate the state of the art system of [9] (whose predictions can be downloaded
from statmt .org\mat rix) in this manner, we get 37.0, which is greater than the 35.8 reported
by statmt.org\matrix.

_'Ihc:;qsultsatepresmr.edin tables 1 and 2. Our best results are obtained with an ‘ensemble of
LSTMst mhwmm@mmdmmmmamwmwe
decodedmSIaﬁonsoftthSTMensembledonothemt}msmeofthcamitistheﬁrstl:imethat
a ‘pure neural translation system outperforms a phrase-based SMT baseline on a large MT task by

IThere several variants of the BLEU score, and each variant is defined with a perl script.

[



Table 1: The performance of the LSTM on WMT"14 English to

an ensemble of 5 LSTMs French test set (ntst14). Note that

size 12. widubeamofsizeZischeapadnnofningleLsmwilhabemuf
L Method

L “Bascline System 9]

|— Cho et al. [5]

- State of the art [9]
Rescoring the baseline 1 t with a sin ard LSTM
Rescoring the baseline 1000-best with a single reversed LSTM _
ing the baseline 1000-best with an ensemble of 5 reversed LSTMs
[ Oraclc Resconng of tho Bascline 1000 best lists

Table 2: Methods that use neural networks together with an SMT system on the WMT" 14 English
to French test set (ntst14).

a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is mthni‘(ni
BLEU points of the previous state of the art by rescoring the 1000-best list of the baseline system.
3.7 Performance on long sentences

We were surprised to discover that the LSTM did well u?gmes, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis

15
oJ 1 | vias piven a card by har in ha garan
at Mary admires Jehn 1o} % I tha parden . Gha gave me & card
| | She gave me  card in the garden
2r Mary Is In love vith John |
5k
' |
|
lII-
°] Mary respacts John
o : John aomires Mary |
| il Sha was given a card by me In the garden
?l SJehn I 0 love: vith Mary In thee garden . | gave her a card
ar ot
-4[ |
1 15 - e "
iy John respacs Mary I | gave her a card in By garder
e -
R 2 ] ? ‘. 4 |

Figure 2: The figure shows a 2-dimensional PCA' on of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure. ) udoRDl"JEC

One of the attractive features of our model is its ability to turn a sequence of words into a vector

of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly

shows that the representations are sensitive to the order of words, while being fairly insensitive to the

s



- . AR

. ‘ aires , qui sont vraiment une question , non seulement parce qu
l::rmtp%eﬂmmduhﬁ:mamluwdemﬁpﬁm.mh

savons, selon la FCC, qu’ ils pourraient interférer avec les tours de téléphone cellulaire
gt ——-omqu” ils sont dans I air " , dit UNK .

Les téléphones portables sont véritablement un probléme , non sculement parce qu’ ils
pourraient éventucllement créer des interférences avec les instruments de navigation , mais
Mq@mm.d'Whm.m‘mmmhmma
LEre téléphonie mobile s' ils sont utilisés & bord ™ , a déclaré Rosenker .
model | Avecla crémation , ily a un ~ sentiment de violence contre le corps d' un étre cher ™,
qui sera * réduit  une pile de cendres ™ en trés peu de temps au lieu d’ un processus de
Trat décomposition * qui accompagnera les étapes du deuil ” .

Iy a, avec Ia crémation , * une violence faitc au corps aimé © ,
qui va étre “ réduit 2 un tas de cendres " en trés peu de temps , et non aprds un processus de
décomposition , qui * accompagnerait les phases du deuil ”.

Table 3: A few examples of long translations produced by the LSTM alongside the ground truth
translations. The reader can verify that the translations are sensible using Google translate.

=+ LSTM (34.8) =—e LSTM (34.8)
40 e—e baseline (33.3) 40 #—s baseline (33.3)

" '
478 12 7 22 kL 3 i3 ] 500 1000 1300 2000 2500 3000 3500

tast sentences sorted by their length teat sentences sorted by average word frequency rank
~35 ﬂ' (e}

Figure 3: The left plot shows the performance of our system as a function of sentence length, where the
x-axis corresponds to the test sentences sorted by their length and is marked by the actual sequence lengths.
There is no degradation on sentences with less than 35 words, there is only a minor degradation on the longest
sentences. The right plot shows the LSTM's performance on sentences with progressively more rare words,
where the x-axis corresponds to the test sentences sorted by their “average word frequency rank”.

replacement of an active voice with a passive voice. The two-dimensional projections are obtained
using PCA.

4 Related work

There is a large body of work on applications of neural networks to machine translation. So far,
the simplest and most effective way of applying an RNN-Language Model (RNNLM) [23] or a



Feedforward Neural Network Language Model (NNLM) [3] to i
i MT
best Jists. of a.strong MT baseline [22], which reliably 1mpr[03es uﬂﬂmo:s qkul:iny

More recently, researchers have begun to look into wa i ing i i
: ys of including information about the source
lm.gﬂagc lﬂ?\ﬂ}e NNLM Examples of this work include Auli et al. [1], who combine an NNLM
zﬂ aﬂhmodel "of the input sentence, which improves rescoring grfcu;man ce. Devlin et al. [8]
d used the decoder's oach, but they incorporated theifNINIM into the decodér'of an MT system
xeil:jpul o Thﬁ@gnmﬂmfmﬁontopmﬁdetheNNIMMththemstmfu]wmdsin

sentence. Their approach i it achi i
o S app was highly successful and it achieved large improvements over

aiOur wurk'ls closely related to Kalchbrenner and Blunsom [18], who were the first tomap the:
sentence into a vector and then back to a sentenct, although they map sentences (o vectors using
convolutional neural networks, which lose the ordering of the words. Similarly to this work, Cho et
al. [5] nsedanlSTM-ﬁkeRNNamhitmhnemmpsenmsmmmmmdbEhalthoughﬂﬁr
primary focus was on integrating their neural network into an SMT system. Bahdanau et al. [2] also
attempted direct translations with a neural network that used an attention mechanism to overcome
the poor performance on long sentences experienced by Cho et al. [5] and achieved encouraging
results. Likewise, Pouget-Abadie et al. [26] attempted to address the ‘memory problem of Cho et
al. (5] by translating pieces of the source sentence in way that produces smooth translations, which
is similar to a phrase-bas oach, We suspect that they could achieve similar improvements by
simply training their networks on reversed source sentences.
End-to-end training is also the focus of Hermann et al. [12], whose model represents the inputs and
outputs by feedforward networks, and map them to similar points in space. However, their approach
cannot generate translations directly: to geta translation, they need to do a look up for.closest vector
in the pre-computed database of sentences, or {0 rescore a sentence.

5 Conclusion

In this work, we showedmalalargedeepISIMwithalimiwdvocabnhrycan outperform a stan-
dard SMT-based system whose vocabulary is unlimited on a large-scale MT task. The success of
our simple LSTM-based approach on MT suggests that it should do well on many other sequence
Jearning problems, provided they have enough training data.

We were surprised by the extent of the improvement obtained by reversing the words in the source
sentences. We conclude that it is important to find a problem encoding that has the greatest number
of short term dependencies, as they make the Jearning problem much simpler. In particular, while
we were unable to train a standard RNN on the non-reversed translation problem (shown in fig. 1),
we believe that a standard RNN should be easily trainable when the source sentences are reversed
(although we did not verify it experimentally).

We were also surprised by the ability of the LSTM to correctly translate very long sentences. We
were initially convinced that the LSTM would fail on long sentences due to its limited memory,
and other researchers reported poor performance on long sentences with a model similar to ours
[S, 2, 26]. And yet, LSTMs trained on the reversed dataset had little difficulty translating long

sentences.

Most importantly,

proach can outperform
lation accuracies. These results

sequence to sequence problems.

we demonstrated that a simple, straightforward and a relatively unoptimized ap-
a mature SMT system, so further work will likely lead to even greater trans-
suggest that our approach will likely do well on other challenging
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