|

2.

AWWREVMANR‘* DEEF[NN

Al QV'SQU\RE |
» RWHQ%AI Foressr Jg U»«vmsm{oews

Alex Krizheysky

niversity of Toronto University University of Toronto

krizg@cs, utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

V{eminedglm.ququo;:voluﬁmalmmalnaworkmchssifythellmiﬂion |
ymages in the ImageNet LSVRC-2010 contest into the 1000 dif- £0 ri(lsor, paramefers
felemclasm..()nt.l:tcst.dam, we achieved top-1 and top-5 error rates of 37.5% -
leral etter thar ous state-of-the-art. Thc 650,000 NeLrong
(OnS, consists

S corwolutional ’a\YErS
ek 3 fylly-conrected loyers

: called ~ulosy S68Frnoxt
very effective. We also entered a variant of this mm e
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,

compared to 26.2% achieved by the second-best entry.

1 Introduction
Current approaches to object recognition make essential use of machine learning methods. To im-
prove their performance, we can co. ts more powerful models, and use bet-

ter techniques for preventing overfitting. Until recently,

datasets of labeled images were relatively

small — on the order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be solved quite well with datasets of this size,
especially if they are augmented with label-preserving transformations. For example, the current-
best error rate on the MNIST digit-recognition task (<0.3%) approaches human performance [4].
But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is
necessary to use much larger training sets. And indeed, the shortcomings of small image datasets
have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to col-
lect labeled datasets with millions of images. The new larger datasets include LabelMe [23], which
consists of hundreds of thousands of fully-segmented images, and ImageNet [6], which consists of
over 15 million labeled high-resolution images in over 22,000 categories.

"}I:g leam about thousands of objects from millions of images, we need a model with a large learning

ever, the immense complexity of the object recognition task means that this prob-

em cannot be specified even by a dataset as large as ImageNet, so our model should also have lots
of prior knowledge to compensate for all the data we don’t have. Convolutional neural networks

(CNNi) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con-
trolled by varying their depth and breadth, and they also make strong and mostly correct assumptions

about the nature of images (namely, stationarity of statistics and locality of pixel de; A
Thus, compared to standard feedforward neural networks with similarly-sized layers s have

ndencies).

nd so they are easier to train, while their theoretically-best

[S al

A-l‘

Despite the
“‘;Y have stil] been m?.f:;fm* and despite the relative efficiency of their local architecture,
» Current Gpy, paired with ;{-xmsm.m apply in large scale to high-resolution images. Luck-
chough to facilitae the training ¢ ighly-optimized implementation of 2D convolution, are powerful
contain enough 1ahe], ed ng of interestingly-large CNNs, and recent datascts such as ImageNet
The s examples 10 train such models without severe overfitting.
Specific contry

Deural networks to.‘:‘;:t:m of this paper are as follows: we trained one of the largest convolutional
competitions [2] and 1(‘)11 the subsets of ImageNet used in the ILSVRC-2010 and ILSVRC-2012
highl)"opﬁmized(;pux' ieved by far the best results ever reported on these datasets. We wrote a
training ftioddl implementation of 2D convolution and all the other operations inherent in
5 mlmbcrcmofumwo neural networks, w!nch we make available publicly'. Our network contains
which are deta apd unusual features which improve its performance and reduce its training time,
with L2 el ed in Section 3. The size of our network made overfitting a significant problem, even
o on labeled training examples, so we used several effective techniques for preventing
" mWwhich are described in Section 4. Our final network contains five convolutional and
connected layers, and this depth seems to be important: we found that removing any

convolutional layer (each of which contai y i
inferior performance, ntains no more than 1% of the model’s parameters) resulted in

In the end, the network’s size is limited mainly by the amount of memory available on current GPUs
and by the amount of training time that we are willing to tolerate. Our network takes between five
and six days to train on tw@GTX 5! [JSAIL of our experiments suggest that our results
can be improved simply by waiting for faster and bigger datasets to become available.

2 The Dataset

ImageNet is a dataset of over 15 million labeled high-resolution images belonging to roughly 22,000
categories. The images were collected from the web and labeled by human labelers using Ama-
zon's Mechanical Turk crowd-sourcing tool. Starting in 2010, as part of the Pascal Visual Object
Challenge, an annual competition called the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) has been held. ILSVRC uses a subset of Image ith 1000 images in each of

1000 categories. In all, there are roughl#1.2 m ’ idation imag

A

ILSVRC-2010 is the only version of ILSVRC for which the test set labels are available, so this is
the version on which we performed most of our experiments. Since we also entered our model in
the ILSVRC-2012 competition, in Section 6 we report our results on this version of the dataset as
well, for which test set labels are unavailable. On ImageNet, it is customary to report two error rates:
top-1 and top-5, where the top-5 error rate is the fraction of test images for which the correct label
is not among the five labels considered most probable by the model.

ImageNet consists of variable-resolution images, while our system requires a constant input dimen-

sionality. Therefore, we @oWnssampled the;images to alfixed resolution of 256,256, Given a
rectangular image, we first resc hat the shorter side was of length 256, and then

d the image such
cropped out the central 956 x 256 patch from the resulting image. We did not pre-process the images
in any other way, except for subtracting the mean activity over the training set from each pixel. So
we trained our network on the (centered) raw RGB values of the pixels.

3 The Architecture

The architecture of our network is summarized in Figure 2. It contains eight learned layers —

Aﬂ‘ﬂ "" e

Midiscure
CarmPoTinG

S CONVGLUTIONA L

five convolutional and three fully-connected. Below, we describe some of the novel or unusual 3 Fu _,J__'J _SOUMEC’"E 17

features of our network’s architecture. Sections 3.1-3.4 are sorted according to our estimation of
their importance, with the most important first.

Ihttp://code. google.com/p/cuda-convnet/

ChHassiug A

PATTERN oOF
consge Ty

mm“d“d“’aym

a .Unofitsin modelanem

Pt 7 is with

n's ou:

1en

{,(z) = max(0,2). FollowingiNEpmEm L nei
meermnm with this
lmmm. B nty as.

work. This plot shows that we e
[\ at we would not have been
letoexpmmentmﬂ:snchlargcnunalnetwo:lmfor

this work if iti :
g we had used traditional saturating neuron

We are not the first to ider alternati i
tional neuron models in s. Fore slewl
etal. [11] claim that the nonlineari h(z

works particularly well with thei

malization followed b , hOC
Caltech-101 dataset. However, ata pri-
mary concern is preventing overfitting, so the effect
the:): are observing is different from the accelerated
ability to fit the training set which we report when us-
ing RelUs. Faster learning has a great influence on the
performance of large models trained on large datasets.

3.2 Training on Multiple GPUs

A single GTX 580 GPU has onl

one another’s memory directly, wi

t f as

In terms
saturating mtrammg linearities

Aﬁal‘

Training error rate
g
”

§
[
(

bm - =y

Figure 1: A four-layer convolutional neural
network with ReLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The leamning rates for each net-
work were chosen independently to make train-
ing as fast as possible. No regularization of
any kind was employed. The magnitude of the
effect demonstrated here varies with network
architecture, but networks with ReL.Us consis-
tently learn several times faster than equivalents
with saturating neurons.

oughwhost machine memory. The parallelization

scheme that we employ essentially puts half of the kernels (or neurons) on each GPU, with one
additional trick: the GPUs communicate only in certain layers. This means that, for example, the
kemels of layer 3 take input from all kernel maps in layer 2. However, kernels in layer 4 take input
only from those kernel maps in layer 3 which reside on the same GPU. Choosing the: g

LN00SIng th

ity is. %p;nblcqlfmmsyvdﬂangn,\but this allows us to preci"ffig“tﬁ% amount

o AR e

until it is an of the amount of computation.

The resultant architecture is somewhat similar to that of the “columnar” CNN employed by Ciresan
et al. [5], except that our columns are not independent (see Figure 2). This scheme reduces our top-1
and top-5 error rates by 1.7% and 1.2%, respectively, as compared with a net with half as many
kernels in each conyolutional layer trained on one GPU. The two-GPU net takes slightly less time
to train than the one-GPU net?.

The one-GPU net actually has the s PU net in the final convolutional
layer. This is because most of the net’s" 1 nected layer, which takes the last
convolutional layer as input. So to make the two nets have approximately the;same number of parameters, we
did not halve the size of the final convolutional layer (nor the fully-conneced Yayers which follow). Therefore
this comparison is biased in favor of the one-GPU net, since it is bigger than “half the size” of the two-GPU
net.

33 Local
ReL Hesponse Normalizatio
ﬁmumeu N lﬂ'mable Property that they :
& '

in that neyrop, Howw,,m W“"@mﬁ Poslive iapat w0 8 Rat U
(% 1wemllﬁmm“wfo 5 IOQI ; .Jﬂ'llngwm
tli, ¥) and thep llowing normalization scheme aids

bY @' _ the activ:
lvi .y ““"VI_ ty of a neuron
CXpression appymghkeLUnOnlmwi(y,h

min(N-1,i4n/2) 4
b (a;,,)*)

J=max(0,i—n/2)

mmnmomnu - r~
umber of kerpels ; adjacent” kernel maps at the same .

i g%ﬁqﬁfMSﬁMMmlmhﬁmuﬁu;megdmwmm WITH
of response normalization implements a form of lateral inhibition DATCH NORMALIZATION
"Sacreating competition for big activities amongst neuron

) ng th
bml hlsoﬁshanebm some resemblance to the 1
am‘:’::;’ldbcmreeonectly erm brightness normalization”, since we do not subtract the
mPecumn'vei WR“P'OIM}lorllmlmmmlo _reduc our and top-5 error rates by 1.4% and 1.2%,
-1y. We also verified the effectiveness of this scheme on the CIFAR-10 dataset: a four-layer

CNN achieved a 13% test error rate without normalization and 11% with normalization>.

contras|

34 Overlapping Pooling

Pooling layers in CNNs summarize the outputs of neighborin groups of neurons i

map. Traditionally, the neighborhoods suurtgmanzed bg;adjaci oC f s samekznel ’OJSY sio
{17, 11, 4]). To be more precise, a pooling layer can be thought of s consisting W ing COMressita
umtsspaceqspxxelsapart,eachsummaﬁzinganeighborlmodofsizez X zce
pf the pooling unit. If we set s = z, we obtain traditional ocal pooling as commonly employed
in CNNs. If we set s < 2, we obmi#ms is what we use throughout our
network, wnh's = 2 and z = 3. This scheme reduces the top-1 and top-5 error rates by 0.4% and
0.3%, respectively, as compared with the non-overlapping scheme s = 2,z = 2, which produces OVERLAPP:Mg—\rmu G-
output of equivalent dimensions. We generally observe during training that models withioverlappin HARDER D oVERFIT

3.5 Overall Architecture
Now we are ready to describe the overall architecture of our CNN. As depicted in Figure 2, the net

eights; the first five are convolutional and the re
ut of the last fully-connected layer is fed to a 1000~ i
nov . wal class 1z ls. € I:;:ork maximizes the multinomial logistic regression APS
=t which is equivalent to maximizing théaye ss training cases of the log-probabili F%PE"
of the correct label under the prediction distribution. Eprobably 3‘ Stm : 6P

The kernels of the second, fourth, and fifth. convolutional layers are conneeted'only to those kernel: 5 Pr VIS [NER
P maw the previous layer which reside on the same GPU (see Figure 2). The kernels of the third

‘convolutional layer are connected to all kernel maps in the second layer. The neurons in the fully-

connected layers are connected to all neurons in the previous layer{Respo nmh%zzlers =

follow the first and second convolutional layers. Max-pooling layers, of the kind described in Section gESFO

3.4, follow both response-normalization layers as well as the fifth convolutional layer. The ReLU NORM‘\U ZN\TO

non-linearity is applied to the output of every convolutional and fully-connected layer.

The first convolutional layer filters Lbe@&l X@M %3 input image wiﬂiﬁ kernels of sizé 11 X1l x%@
with a stride of@ pixels (this is the distance between the receptive field centers of neighboring

*We cannot describe this network in detail due to space constraints, but it is specified precisely by the code
and parameter files provided here: http://code.google.com/p/cuda-convnet/.

4

nceD AA‘M

a ml.i

m 128 Max

d . 2048
I/ T Y
7; - Py T :
Figure 2: An; .
: hﬂw&nﬁmﬁmeumimamm.mwuymgw
the i 5. One GPU runs the Ia -parts at the top of the figure while runs the layer-parts
bottor, GPl_Jleunlllmicmonlyaminlamm ’s input is 150,528-dimensional, and
w in the network's remaining layers is given '

x/lo*lxy ¥ XV | *’/3

::;“’“5 ina map). The second convolutional layer takes as input the (response-normalized
mP"_d“') output of the first convolutional layer and filters nmwm 5x 5 x 48.
third, fourth, and fifth convolutional layers are connected to one another without any intervening
ggglms Or normalization layers. The third convolutional layer has 384 kemnels of size 3 x 3 x
connected to the (ized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 x 3 x 192, and the fifth convolutional layer has 256
kenels of size 3 x 3 x 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture) Although the 1000 classes of ILSVRC
make each training example impose ts of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfittirig.

4.1 Data Augmentation i
The easiest and most common method to reduce overfitting on image data is togartificia lly.enlarge .
the dataset using label-preserving transformations (e.g., [25, 4, 51). We employ two distinct forms A

of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.
“The first form of data augmentation consists of{gei zontal reflec-
tions. We do this by extracting random 224 x 224 patches (and their horizontal reflections) from the
256 x 256 images and training our network on these extracted patches®. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of coursé; highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 x 224 patches (thesfour comer patches and the/center patch) as well as their horizontal
" reflections'(hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.
The second form of data augmentation consists ofjaltél ing the intensiti s of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

“This is the reason why the input images in Figure 2 are 224 x 224 x 3-dimensional.

UPDRTE

RuLE FOR
LeE AN

f ma"'“mdive[y and " Wo{ RGB pixel PCA-R(\\Uﬁb
m‘nﬂ‘emxeh > 2nd a; is the af random variable. Each o is drawn only once
POINt it is pe_gra, ﬂlllrtmnmgmngcumlthmmgemusedforummngagmatwlnch Compsenst

: his schem r | nportant property ofmmra] nmgm, AMIS

I, 3]h,mn8hnn predictions of many different models is a very successful way. to reduce test errors

0 train, appears to for big neural networks that already take several days

Sk ofltwh““& however, a very efficient version of model combmanon that onIy costs about a oR)fOUT
© during training. i [10], consists

out” in this way do notoomributc to the forward pass'anddo not participate in back-
pbmmpama]l on. So every time an input is presented, the neural network samples a dxﬁerent amhnecume
out all these m'chltecmmssharewclghts Tlnstechmqucreduoc aptations of neu

oﬂnm At test time, we use all the neurons but mulnply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

‘We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughlydoubles the number of iterations required to converge.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In Figure 3: 96 convolutional kenels of size
other words, weight decay here is not merely a regularizer: - 115 11x3 learned by the first convolutional
it reduces the model’s training error. The update rule for jayer on the 224 x 2243 input images. The
top 48 kemels were learned on GPU 1 while

L the bottom 48 kernels were learned on GPU
viy1 = 0.9-v;—0.0005-€-w;—¢€- <%|w;> 2. See Section 6.1 for details.

D;

Wit1 = Wi+ Vg1

~Where i is the iteration index, v is the momentum variable, € is the learning rate, and <8w w) is
i/ D,

the average over the ith batch D; of the derivative of the objective with respect to w, evaluated at
w;.

_ We initialized the weights in each layer from a%trmﬁm Ganssian distribution with standard de-

0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with thé constant 1. This initialization accelerates (;ausc/AN LOKE IGH T
the early stages of leammg by providing the ReLUs with positive inputs. We initialized the neuron

biases in the remaining layers with the constant 0. INITIAL ZATION
We used an equal learning rate for all layers, which we)gd_)u:led manually throughout training.
The heuristic. which.we followed was tow-ﬂr 1g rate by 10 when the validation error

(rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and

6

training gy 10 termination, We tra

which ok five 13 SRS oot e gh e

6 Resyls

()llrl'e;uhs
on ILSVRC-2019 ized i
test set are summarized in Table network achi
2010 ﬁtﬁ? of 37.5% and 17.0%°. The best pcrlfnl?‘n:noe anh:va:;nm mﬁ
i was 47.1% and 28.2% with an approach that averages the predictions produced
shed resulis gpe e mﬂdcmzlsl;luncdondlﬁmfm [2], and since then the best pub-
fiees tra: OnPish;rV .%wnhanappmachﬂmtmguthepmdicﬁonsoftwoclaui-
med ectors (FVs) computed from two types of densely-sampled features [24].

We also entereq

hird our model in the ILSVRC-2012 com. | Model Top-1_| Top5 | STATE-0F-THE-AET

on ;

ILSVR; ?;glm our results in Table 2. Since the | Sparse coding [2] | 47.1% | 28.2%
—load: set labels are not publicly available, FVs [24] | 45.7% | 25.7%
we tried, h“wﬂmqmrmmforanthemodclsmat Sk
validag; the mnmnderofﬂ:ispmagmgh,weuse
in our &;;ld test error rates interchangeably because Table 1: Comparison of results on ILSVRC-
(sce Teble 2 ence they do not differ by more than 0.1% 2010 test set. In italics are best results
L e2). The CNN described in this paper achieves achieved by others.

" fc:ig,:e error rate of 18.2%. Averaging the predictions)

volutiony L CNNs gives an eror rate of 16.4%. Training one CNN, with an extra sixth con-
(15M i yer over the Iast pooling layer, to classify the entire ImageNet Fall 2011 release
16 6%'-“1:8%, 22K categories), and then “fine-tuning” it on ILSVRC-2012 gives an error rate of
il veraging the predictions of two CNNs that were pre-trained on the entire Fall 2011 re-
ease with thg aforementioned five CNNs gives an error rate of %. The second-best con-
test entry achieved an error rate of 26.2% with an approach that averages the predictions of sey-
eral classifiers trained on FVs computed from different types of densely-sampled features [7].

Finally, we also report our error

i o elthemFlf:li 322’; version of "Nfodel [Top-1 (val) | Top-5 (val) | Top-5 (test) |
‘%::%:9 e ‘:‘&ﬁf SIFT + FVs [7] = == 26.2%

dataset we féﬂowl?é convention |-LCN el] L] —

in the Titerature of using half of | 3 C100 38.1% 16.4% 164%

the images for training and leea =

for testing. Since there is no es- — rg =

tablished test it neces-
sarily differs ﬁ”" ﬁsgém } Table 2: Comparison of error rates on ILSVRC-2012 validation and
by R but this does €5t 5€ts- In italics are best results achieved by others. Models with an

asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall

oy i R A
01_1@[11@s dataset are 4% and

40.9%, attained by the net described above but with an additional, sixth convolutional layer over the
last pooling layer. The best published results on this dataset are 78.1% and 60.9% [19].

6.1 Qualitative Evaluations

Figure 3 shows the convolutional kernels learned by the network’s two data-connected layers. The
network has learned a variety offiieq ind orientation-selecti) as well as various col-
ored blobs. Notice the specialization ¢ the two' -
tivity:described in Section 3.5. The kemels on GPU 1 are largely cokr-% while the kernels
on on GPU 2 are largely color-specific.. This kind of specialization occurs during every run and is

independent of any particular random weight initialization (modulo a renumbering of the GPUs). -7

3The error rates without averaging predictions over ten patches as described in Section 4.1 are 39.0% and
18.3%.

il
Ban 1t

Figure 4: : .

The mmal:;:: :’:ﬁ E:’I‘Rd(;zom test images and the five labels considered most probable by our model.

with a red bar (if it happens to be j cach image, and the probability assigned to the correct label is also shown

remaining columns show the sj i the top 5). (Right) Five ILSVRC-2010 test images in the first column. The

smallest Euclidean i SIX training images that produce feature vectors in the last hidden layer with the
istance from the feature vector for the test image.

gp‘ge;:;?;?el of thum 4 we qualitatively assess what the network has learned by computing its

top-left, I;)ens On eight test images. Notice that even off-center objects, such as the mite in the

onl m:a“ recognized by the net. Most of the top-5 labels appear reasonable. For example,

lhcy other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
¢ 1s genuine ambiguity about the intended focus of the photograph.

An°th?f way to probe the network’s visual knowledge is to consider LIS feature activatic

by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
tl}e training set that are most similar to each of them according to this measure. Nofice that at the
pixel level, the retrieved training images are generally not close in@o the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Ediclidean distaficé between two 96-dimensional, real-valued vec-
tors is inefficient, but it could be madecﬂi‘%tmhﬁngan auto-encoder to compress these véctors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results. SE E0S o

To simplify our experiments, we did not use an§jUnSuperVised pre-tfainiing even though we expect. 2 T
that it will help, especially if we obtain enough computati power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results'have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video

Vi 1S sequences where the temporal structure provides very helpful information that is missing or far less

NTE%QT}}.&_ ; obvious in static images.
~rugl MOTOP 8
CARTV RE

References

(1] RM.Belland y
92):75-19, mxmm Lessons from the netfiix
2] A. Beg, J.

- iregan, U. Meier, and 1. Schmi
i . o ! G dhuber. i
[5] f)"é'” Preprint arXiv:1202.2745, 2012 Multi-column decp neural networks for image classification.
networts s MEIt, . Masci, LM, Gambardela, and 1. Schmidhuper
6] J. Deng, W. Done. qkblcsaocchmﬂc?m Arsiv preprin arXiv: 1102.0183, 201 lmmm el
:) er, L-J. Li, K. 13 5 s * 2
- }l'n;g:nl)mabase. In CVPR09, 2009, L K- Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
oo ® A Berg. S. Satheesh, H. Su, A. Khosla, and L Fei_pe:
tp://www.image-net L. Fei-Fei. [LSVRC-2012, 2012. URL
18] L. Fei-Fei -org/challenges/LSVRC/2012/
: “R'F“E“&Mdp-?ma.l.mninggmw " - .
incremental bayesian approach tested on 10] object visual models from few training examples: An
ing, 1(.)6(1):59_70' 2007, ject categorics. Computer Vision and Image Understand-
. gﬁ?ﬁ'&“‘ Holub, and P. Perona. Caltech-256 object category dataset. Technical Report 7694, Cali-
[10] GE. l-linmﬁ'nf\‘jogl:mlogy' 2(1?7- URLﬁhttg{:_ //authors.library.caltech.edu/7 694.
works by preventing e po 1 Kiizhevsky, 1iSulskever, and R R. Salakhutdinov. Improving neural net-
(1] K. Jarre P‘K_""c“‘mg co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.
obieet pan K- Kavukcuoglu, M. A. Ranzato, andsY. LeCun. What s the best multi-stage architecture for
2. A Koo _gnttion? In International Conference'on Computer Vision, pages 2146-2153. TEEE, 2009.
“A- Krizhevsky. Leaming multiple layers of featurcs from tiny images. Master’s thesis, Department of
Computer Science, University of Toronto, 2009.
{i i} : Kiizheysky. Convolutional deep belief networks on cifar-10. Unpublished manuscript, 2010.

KﬂﬂtzvoslliyandG.EHimon. Using very deep autoencoders for content-based image retrieval. In

p >

[15] Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, et al. Hand-
written digit recognition with a back-propagation network. In Advances in neural information processing
systems, 1990.

[16], ¥. LeCun, FJ. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to
pose and lighting. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the
2004 IEEE Computer Society Conference on, volume 2, pages 11-97. IEEE, 2004.

[17]"¥. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional networks and applications in vision. In
Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, pages 253-256.
IEEE, 2010.

[18] H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng. Convolutional deep belief networks for scalable unsuper-
vised leamning of hierarchical representations. In Proceedings of the 26th Annual International Conference
on Machine Learning, pages 609-616. ACM, 2009.

[19] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric Learning for Large Scale Image Classifi-
cation: Generalizing to New Classes at Near-Zero Cost. In ECCV - European Conference on Computer
Vision, Florence, Italy, October 2012.

[20] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proc. 27th
International Conference on Machine Learning, 2010.

[21] N. Pinto, D.D. Cox, and J.J. DiCarlo. Why is real-world visual object recognition hard? PLoS computa-
tional biology, 4(1):€27, 2008.

[22] N. Pinto, D. Doukhan, J.J. DiCarlo, and D.D. Cox. A high-throughput screening approach to discovering
good forms of biologically inspired visual representation. PLoS computational biology, 5(11):¢1000579,
2009.

[23] B.C. Russell, A. Torralba, K.P. Murphy, and W.T. Freeman. Labelme: a database and web-based tool for
image annotation. International journal of computer vision, 77(1):157-173, 2008,

[24] J. Sanchez and F. Perronnin. High-dimensional signature compression for large-scale image classification.
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1665-1672. IEEE,
2011.

[25] PY. Simard, D. Steinkraus, and J.C. Platt. Best practices for convolutional neural networks applied to
visual document analysis. In Proceedings of the Seventh International Conference on Document Analysis
and Recognition, volume 2, pages 958-962, 2003.

[26] S.C. Turaga, J.F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Briggman, W. Denk, and H.S. Seung. Con-

volutional networks can leamn to generate affinity graphs for image segmentation. Neural Computation,
22(2):511-538, 2010.

