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Abstract—In the first part of this paper, a regular recurrent
neural network (RNN) is extended to a '..hidlrecl'lonal recurrent
(neural network (BRNN). The BRNN can be trained without
the limitation of using input information just up to a preset
!murt_l'ramc. This is accomplished by training it simultancously
in positive and negative time direction. Structure and (rninin'g
procedure of the proposed network are explained. In regression
and classification experiments on artificial data, the proposed
structure gives better results than other approaches. For real
data, classification experiments for phonemes from thé TIMIT
database show the same tendency.

In the second part of this paper, it is shown how the proposed
bidirectional structure can be easily modificd to allow efficient
estimation of the conditional posterior probability of complete
symbol sequences without making any explicit assumption about
the shape of the distribution. For this part, experiments on real
data are reported.

Index Terms — Recurrent neural networks.
. INTRODUCTION

A. General

ANY classification and regression problems of engi-

neering interest are currently solved with statistical
approaches using the principle of “learning from examples.”
For a certain model with a given structure inferred from the
prior knowledge about the problem and characterized by a
number of parameters, the aim is 10 estimate these parameters
accurately and reliably using a finite amount of training data.
In general, the parameters of the model are determined by a
supervised training process, whereas the structure of the model
is defined in advance. Choosing a proper structure for the
model is often the only way for the designer of the system
to_put.in prior knowledge about the solution of the problem.

_ Jeuralnetworks (ANN's) (sce [2] for an excellent
introduction) are one group of models that take the principle
“infer the knowledge from the data” to an extreme. In this
paper, we are interested in studying ANN structures for one
lems that are represented by! temporal
-oufput data pairs, For these types of
, for example, in speech recognition,
time series prediction, dynamic control systems, etc., one of
the challenges is to choose an appropriate network structure
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that, at least theoretically, is able to use all available inpul
information to predict a point in the output space.

Many ANN structures have been proposed in the literature
to deal with time varying pallcrns.\TMﬂIﬁ'la)?e_r-peWns
(MEP'S) have the limitation that they \ganvonly deal with
i‘tﬁﬂg‘ﬂatapguems (i.e., input patterns of a predefined dimen-
s‘ronali'ty), which requires definition of the size of the input
window in advance. Waibel e al. [16] have pursuedtime delay
ineural networks (TDNN's), which have proven to be a useful
improvement over regular MLP's in many applications. The
basic idea of a TDNN is to tie certain parameters in a regular
MLP structure without restricting the learning capability of the
ANN too much. Recurrent neural networks (RNN's) [5], [8],
[12], [13], [15] provide another alternative for incorporating
temporal dynamics and are discussed in more detail in a later
section.

In this paper, we investigate different ANN structures for
incorporating temporal dynamics. We conduct a number of
experiments using both artificial and real-world data. We show
the superiority of RNN’s over the other structures. We then
point out some of the limitations of RNN’s and propose a
modified version of an RNN called a bidirectional _recurrent
neural network, which overcomes these limitations.

B. Technical
a (time) sequence of input data vectors

Consider

T__
Xi = {X1, X2, X3, ..., X7—1, Xr}

FFE|NFUT
\

and a sequence of corresponding Qu!.p_uijalzuce)ors

T _\.;T{‘\‘ﬁ
i = {YI: ¥2; ¥3, "+ Y1, yT} VECTD

with neighboring data-pairs (in time) being somehow statisti-
cally dependent. Given time sequences x7 and y¥ as training
data, the aim is to learn the rules to predict the output data
given the input data. Inputs and outputs can, in general, be
continuous and/or categorical variables. When ‘outputs are
‘continuous, the problem is known as a'regression problem,
and when they are ‘categorical (class labels), the problem is
known as a classification problem. In this paper, the term
“prediction is used as a general term that includes regression

~ and classification. _
) Unimodal Regression: Fof unimodal o r fune-
L approxi ony the components of the vectors are

uni

hood of the output data). When the distribution of the
the desired and the estimated output vectors

data-epenc
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(a)
MSE

convenient Euclidean distance measure between the desired
and the estimated output vectors or the: mean-squared-error
criterion. which has to be minimized during training [2]. It
has been shown by a number of researchers 2], [9] that

neural networks canfeSlimate the conditional average
E%%{ ficor target) vectors at their network outputs, i.c.,

vi = Ely|xT], where E[] is an expectation operator.
2) Classification: In the case of a classification problem,
one seeks the [most probable class out of a given pool of
K classes for every time frame . given an input vector
sequence X7 . To make this kind of problem suitable to be
solved by an ANN. the categorical variables are usually coded
“as vectors as follows. Consider thal is the desired class
label for the frame at time #. Then, construct an output vector
sE =y, such that its ith component is one and other components.
Ao _are zero. The output vector sequence y7 constructed in this
N anner along with the input vector sequence x¥ can be
used to train the network under some optimality criterion,

usually the cross-entropy criterion [2]. [9], which results from.

MLE 2 aximum likelihood estimation assuming a’ multinomial
output distribution. It has been shown [3]. [6]. [9] that the
ath network output at each time point £ can be interpreted as
an estimate of the {¢onditional posterior probability of class
nembership (7 = Pr(C; = k[xT)] for class i with the
quality of the estimate depending on the size of the training
data and the complexity of the network.

For some applications, it is not necessary 10 estimate the
conditional posterior probability Pr(C; = klx]) of aisingle
class given the sequence of input vectors but the conditional
posterior probability Pr (cy, ¢2, **+, or|x?) of asequence of
classes given the sequence of input vectors.!

GNGLE 45, Sea/ence 0T
C. Organ{?;é?gn of the }:'aji::ns'rfy'AS‘s &3S

This paper is organized in two parts. Given a series of paired
input/output vectors {(x¢, y¢), t =1, 2, -++, T}, we want 1o
train bidirectional recurrent neural networks to perform the
following tasks.

. “(i.e., compute ¥, = Efy:|xT]) or
classification [i.e., compute 7; ) = Pr(C: = kxT)
for every output class k and decide the class using the
maximum a posteriori decision rule]. In this case, the

periments

1 Here, we want to make a distinction between Cy and c¢. Ct is a categorical
random variable, and ¢; is its value.
2C
—_—

1 7>M>50>0)

Fig. I. General structure of a regular unidirectional RNN shown (a) with a delay line and (b) unfolded i

%

t-1 t

(b)

n time for two time steps.
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for this part are conducted for artificial toy data as well

as [or real data.
« Estimation of the [€onditional probability
'sequence of classes of length 7" using all

of a complete
available input

e T
S formation [i.c., compute. Pr(cu, c2, -~y cz|Xi)l- In

this case, the Outputs are treated as

being statistically

“dependent, which makes the estimation more difficult and
requires a slightly different network structure than the one
used in the first part. For this part, results of experiments

for real data are reported.
II. PREDICTION ASSUMING INDEPENDENT OUTPUTS

A. Recurrent Neural Networks

DeLAY
LINE

RNN's provide a very elegant way of dealing with (time)
sequential data that embodies correlations between data points
that are close in the sequence. Fig. 1 shows a basic RNN
architecture with afdelay line and unfolded in time for two
time steps. In this structure, the inpul vectors x, are fed one
at a time into the RNN. Instead of using a fixed number of
input vectors as done in the MLP and TDNN structures, this
architecture can make use of all the available input information
up to the current time frame £ (i.e., {x;t=1,2,+, %}
{o predict y¢,. How much of this information is captured by
a particular RNN depends on its structure and the training
algorithm. An illustration of the amount of input information
used for prediction with different kinds of NN's is given in

Fig. 2.

Wuﬁgglnput information coming up later than ¢, is usually
also'useful for prediction. With an RNN, this can be partially
achieved by delaying the output by a certain number of M time
frames to include future information up to X; 4 to predict
yi. (Fig. 2). Theoretically, M could be made very large to

capture all the available
it is found thatprediction ¢ e
possible explanation for this could be that

ture information,

but in practice,
‘is too large. A
with rising M,

the modeling power of the RNN is increasingly concentrated
on remembering the input information up to X ar for the
prediction of y;., leaving less modeling power for combining

the prediction knowledge from different input vectors.

OPTIMAL

While delaying the output by some frames has been used . F'\"(
successfully to improve results in a practical speech recogni-DCL

tion system [12], which was also confi
conducted here, the W 1S tas
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Fig. 2. Visualization of the amount of input information used for prediction by different network structures,
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Fig. 3. General structure of the bidirectional recurrent neural network (BRNN) shown unfolded in time for three time steps.

be found by the “trial and error” error method on a validation

test set. Certainly, a more elegant approach would be desirable.

To use all available input information, it is possible to use

two separate networks (one for each time direction) and then

LIN? vysomehow merge the results. Both networks can then be called

ovv fo experts for the specific problem on which the networks are

VO"‘) trained. One way of merging the opinions of different experts

is to @gt:me'the opinions 10 be independent, W hich leads to

for regress:on and tqgeomemc averaging

& (or r, alternativ c]) 10 an arithmetic averaging in the log domain)

L?;,N:t W for cIass.1ﬁcauon Thcse merging procudures are refcrred to

' inion_pooling and opinion

respecuve]y'[ll [7]. Although simple merging of nelwcnrk

outputs has been applied successfully in practice [14], it is

generally not clear how to merge network outputs in an optimal

way since different networks trained on the same data can no_
longer be regarded as independent. (o rE@TANT t
' ~ pisTINETION,

B. Bidirectional Recurrent Neural Networks

To overcome the limitations of a regular RNN ou{hned
in the :

previous. section, we propose a iona
BR \_?"iﬁaat can be trained usmg all avallable

Sﬂl-ﬂnle ’)_Srrucmr_e; The idea is to urons of a

regular RNN in a part that is responsible for the

time direction (forward states) and a part for th time

not connected to inputs of backward: stémxr. and vrwveaa

mput mformauon in the past and future of as§pegificatime—

direction (backward states). (gytputs from for

This leads to the general structure that can be seen in Fig. 3,
where it is unfolded over three time steps. It is not possible to
display the BRNN structure in a figure similar to Fig. | with
the delay line since the delay would have to be positive and
negalive in time. Note that without the backward states, this
structure simplifies to a regular unidircctional forward RNN,
as shown in Fig, 1. If the forward states are taken oul, a
regular RNN with a reversed time axis results. With both time
directions taken care of in the same network, input information
in the past and the f‘ulurc of 1he currcmly evaluated time rame
can dlrcul) : Hjee‘uve function w1lh0nt

regular umdtrecuonal RNN discussed above. S< i

2) Training:
the same a]gorlthms as a regular unidirectional RNN because
there are eractions between the two types of state
neurons and, therefore, can be unfolded into a general feed-
forward network. However, if, for example, any form of
back-propagation through time (BPTT) is used, the forward
".and backward pass procedure is slightly more complicated
because the update of state and output neurons can no longer
be done one at a time. If BPTT is used, the forward and
backward passes over the unfolded BRNN over time are done
almost in the same way as for a regular MLP. Some special
treatment is necessary only at the beginning and the end of
the training data. The forward state inputs at ¢ = 1 and the

The BRNN can principally be trained with' IRANING
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backward state inputs at t = 7" are not known. Setting these

could be made part of the learning process. but here, they

are set arbitrarily to a fixed value (0. 5). In addition, the local
state derivatives at t = T for the forward states and at t =1
for the backward states are not known and are sel here to
zero, assuming that the information beyond that point is not
important for the current update, which is, for the boundaries,
certainly the case. The training procedure for the unfolded
bidirectional network over time can be summarized as follows.
1) FORWARD PASS
Run all input data for one time slice 1 < ¢ < T through
the BRNN and determine all predicted outputs.

a) Dogforward pass just for forward states (from ¢ = 1
to t = T) and backward states (from t = T' 0 = 1).

b) Do forward pass for@utput neurons.

BACKWARD PASS '

Calculate the part of the objective function derivative

for the time slice 1 < ¢ < T used in the'forward pass.

a) Do backward pass for output neurons.

b) Do backward pass just foryforward states (from
t =T to t = 1) andsbackward states (from ¢t = 1

| __-——"‘)""r FC; '-;-T.__HH :&

e
T— 8BS
C. Experiments and Results FoPwA &P

- 7 o PASS ;
In this section, we describe a number of experiments with

the goal of comparing the performance of the BRNN structure
with that of other structures. In order to provide a fair com-
parison, we have used different structures with d comparable

2)

ot —/T)-——~>
3) UPDATE WEIGHT.

{ number of parameters as a rough complexity measure. The

experiments are done for artificial data for both rregression
and classification tasks with_small networks (o allow extensive
i —
experiments and for real data for a phoneme classification task
with larger networks.
1) Experiments with Artificial Data:

a) Description of Data: In these experiments. an artifi-
cial data set is used to conduct a set of regression and
classification experiments. The artificial data is generated as
follows. First, aistream of 10000 random numbers between

and one is created as the one-dimensional (1-D) input
data to the ANN The 1-D output dala (the desued output} is.

-1

1
() =15 m.z_:m 2(t + At) -
19

+% > 2(t+ A

[a4
10

(-%)
|At|
( - 'ﬁ)'
e = i
The weighting procedure introduces correlations between
neighboring input/output data pairs Lhal become Iess for

At=0

symmetrical, being

For the cla551ﬁcat10n

TABLE 1
DETAILS OF REGRESSION AND CLASSIFICATION
ARCHITECTURES EVALUATED IN OUR EXPERIMENTS

STRUCTURE STATES SHIFT-
(FOR/BACK) RANGE
RNN-FOR 270 5 to +20
RNN-BACK n/2 +5 to-20
MERGF, 2/2 -2/42 to +10/-10
BRNYN 2/2 none

experiments, the output data is mapped to two classes, with
class 0 for all output values below (or equal to) 0.5 and class
| for all output values ‘above 0.5, giving approximately 59%
of the data to class 0 and 41% to class 1.

b) Experiments:. Separate experiments are conducted for
regression and classification tasks. For each task, four different
architectures are tested (Table I). Type “MERGE” refers to
the merged results of type RNN-FOR and RNN-BACK be-
cause they are regular unidirectional recurrent neural networks
trained in the forward and backward time directions, respec-
tively. The first three architecture types are also evaluated over
different shifts of the output data in the positive time direction,
allowing the RNN to use future information, as discussed
above.

g AckuARD Every test (ANN training/evaluation) is run 100 times with
opac S [different initializations, of the ANN to get at least partially

rid of random Auctuations of the results due to convergence
to local minima of the objective function. All networks are
trained with 200 cyeles. of a modified version of the "re-
silient propagation (RPROP) technique [10] and extended to
‘a RPROP through a time variant. All sveights'in the structure
areinitialized in the range (—l 1) drawn from the uniform
distribution, except the output biases, which are set so that
the corresponding output gives the prior average of the output
data in case of zero input activation.

For the regression experiments, the networks use thé tanh ()
activation function and are trained to minimize the, mean-
s_uared~err jective function. For type “MERGE,” the
of the network outputs of “RNN-FOR™ and
is taken, which assumes lht,m to be mdcpen

“RNN-BACK"
dent, as discussed above for the®

For the classification expcnmems the output layer uses the

160 = (ST

200 =
CYCLES

RPRoP
w“’Of" r\

Lanhl )

MSE

‘_QHEAP
ap, Masd

softmax” output function [4] so that outputs add up to one > Softm&X
and can be interpreted as probabilities. As commonly used for grmss.-enteyy

ANN'’s to be trained as classifiers, the €ross- enmepyhobjecti»c
function is used as the optimization criterion. 'cause the
outputs are probabilities assumed to be generated b

S

- a-{u of the network ou{puls of
"RNN FOR” and “RNN-BACK" is taken.
¢) Results: The results for the regression and the classifi-
cation experiments averaged over 100 training/evaluation runs
can be seen m ths 4 and 5, respectively. For the regression
( red error depending on the shift of the
output data in pos:twe time direction seen from the time
ax;s of the network is shown. For the classification task, the
rate, instead of the mean value of the objective
unction (whnch would be the mean cross-entropy), is shown

L&G-

o @i 10A
ool



HUSTER AND PALIWAL: BIDIRECTIONAL RECURRENT NEURAL NETWORKS 2677
0.005 . :
RS | s OF
- 'ANN- j e oULD VT
0.0045 MERGE: W e
'BANN' o |7y seg TH!?
0.004 - dp TEWUAS
HYPERRMC
0.0035
o
e}
&
T 0003
[a]
w
T 0.0025
g
> 0002
<
w
=
0.0015

0.001

0.0005

0
5

Fig. 4. Averaged results (100 runs) for the regression experiment on
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5 10
SHIFT OF OUTPUT DATA IN FUTURE DIRECTION

artificial data over different shifts of the output data with

15 20

respect fo the input data

in future dircction (viewed from the time axis of the corresponding network) for several structures.

because it is a more familiar measure to characterize results
of classification experiments.

Several interesting properties of RNN's in general can be
directly seen from these figures. The minimum (maximum)
for the regression (classification) task should be at 20 frames
delay for the forward RNN and at 10 frames delay for the
backward RNN because at those points, all information for
a perfect regression (classification) has been fed into the
network. Neither is the case because the modeling power
of the nelworks given by the structure and the number of
free parameters is not sufficient for the optimal solution.
Instcad, the single time direction networks try 10 make a
tradeoff between “remembering” the past input information,
which is useful for regression (classification), and “knowledge
combining™ of currently available input information. This
results in an optimal delay of one (two) frame for the forward
RNN and five (six) frames for the backward RNN. The
optimum delay is larger for the backward RNN because the
artificially created correlations in the training data are not
symmetrical with the important information for regression
(classification) being twice as dense on the Jeft side as on the
right side of each frame. In the case of the backward RNN,
the time series is evaluated from right to left with the denser
information coming up later. Because the denser information
can be evaluated easier (fewer paramelers are necessary for
2 contribution 10 the objective function minimization), the
| optimal delay is larger for the backward RNN. If the delay
is so large that almost no important information can be saved
over time, the network converges to the best possible solution
based only on prior information. This can be seen for the

« tion of the results, which is only show

classification task with the backward RNN, which converges
{o 59% (prior of class 0) for more than 15 frames delay.

Another sign for the tradeoff between sremembering” and
“Kiiowledge.combining’ is the variation in the standard devia-
X n for the backward RNN
in the classification task. In areas where both mechanisms
could be useful (a 3 to 17 frame shift), different local minima
of the objective function correspond (o a certain amount
(o either one of these mechanisms, which results in larger
fluctuations of the results than in areas where “remembering”
is not very useful (=5 to 3 frame shift) or not possible (17
to 20 frame shift).

If the outputs of forward and backward RNN’s are merged
so that all available past and future information for regression
(classification) is present, the results for the delays tested here
(=2 to 10) are, in almost all cases, better than with only one
network. This is no surprise because besides the use of more
useful input information, the number of free paramelers for
the model doubled.

For the BRNN, it does not make sense (o delay the output
data because the structure is already designed to cope with
all available input information on both sides of the currently
evaluated time point. Therefore, the experiments for the BRNN
are only run for SHIFT = 0. For the regression and classifica-
tion tasks tested here, the BRNN clearly performs better than
the network “MERGE” built om of the single time-dircction
networks “RNN-FOR™ and “RNN-BACK,” with a comparable
number of total free parameters,

2) Experiments with Real Data: The goal of the experi-
ments with real data is to compare different ANN structures

H.}Tf_: (Zﬁf;ﬂ
HEY ™
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Fig. 5. Averaged results for the classification experiment on artificial data.

il for the classification of phonemes from the TIMIT speech
database. Several regular MLP’s and recurrent neural network
architectures, which make use of different amounts of acoustic
context, are tested here.

£.3K a) Description of Data: The TIMIT phoneme database

sEl TBERS a well-established database consisting oft 6300 sentences
spoken by 630 speakers (ten sentences per speaker). Following
official TIMIT recommendations. two of the sentences (which
are the same for every speaker) are not included in our
experiments, and the remaining data set is divided into two
sets: 1) thefftraining data set consisting of 3696 sentences

(from'462 speakers and 2) the test data set consisting of 1344+

tsentences from 168 speakers. The TIMIT database provides
‘hand segmentation of each sentence in terms of phonemes
and a phonemic label for every segment out of a pool of 61
phonemes. This gives 142910 phoneme segments for training
and'51 681 for testing.
In our experiments, every sentence is transformed into
a vector sequence using three levels of feature extraction,
FeATE First, features are extracted every frame to represent the raw
waveform in a compressed form. Then, with the knowledge
pow™ of the boundary locations from the corresponding label files,
o segment features are extracted to map the information from
an arbitrary length segment to a fixed-dimensional vector. A

sonthird transformation is applied to the segment feature vectors
to make them suitable as inputs o a neural net. These three
steps are briefly described below.

1) Frame Feature Extraction: As frame features, 12 reg-
ular MFCC’s (from'24 mel-space frequency bands) plus
the log-energy are extracted every 10 ms with a 25.6-ms

24 MEL- SPACE

BANDS

ANy

| 2
MECLS

5 10
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_ . » Mec FrecuENCY
MFCES = (g purpac. CoprmOENTS

15

.y'r)-: 8. 7
Hamming window and a preemphasis of 0.97.This is a
commonly used feature extraction procedure for speech
signals at the frame level [17].

Segment Feature Extraction: From the frame fea-
tures, the segment features are extracted by dividing
the segment in time into five equally spaced regions
and computing the area under the curve imeach region,
with the function values between the data points linearly
interpolated. This is done separately for each of the

13 frame features. The duration of the segment is used
as an additional segment feature. This results in a 66-
dimensional segment feature vector.

Neural Network Preprocessing: Although ANN's can
principally handle any form of input distributions, we
have found in our experiments that the best results
are achieved with” Gaussian input distributions, which

maltches the experiences from [12]. To generate an

2

—

“almost-Gaussian distribution,” the inputs are first nor- *

malized to zero mean and unit variance on a sentence
basis, and then, every feature of a given channel® is
quantized using afscalar quantizer having 256 recon-
structiontlevels (1 byte). T'he scalar quantizer is designed
W ma:g‘i_t&i;e*lh_q: entropy-of the- channel. for- the whole.
training data, The maximum cntropy scalar quantizer
“can be easily designed for each channel by arranging
the channel points in ascending order according to their

feature values and putting (almost) an equal number of

2Here, each vector has a dimensionality of 66. Temporal sequence of each
component (or feature) of this vector defines one channel. Thus, we have here
66 channels.

<fee T™RAC
ENURLOVE
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20 w;_‘JD"‘-‘—)
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backward RNN's (FOR-RNN, BACK-RNN), making use of
input information only on one side of the current segment, give
lower recognition rates (63.2 and 61.91%) than the forward

(CHUSTER AND PALIWAL: BIDIRECTIONAL RECURRENT NEURAL NETWORKS 2679

TABLE 11
TIMIT PuonNeME CLassIFICATION REsuLTs For FuLL
TraINING AND TEST DATA SETS WITH & 13 000 PARAMETERS

pirasiaTe T[[:‘:nhtf (?g} Tl:‘esc'-l‘ng;e[zg RNN with one segment delay (65.83%). With a two‘segmenl
MTP-T (1 sogment) | 6132 (70.20) | 50.67 (68 95)) sy, ISR Tilouion s fo JRAIRC S o anﬁ
MLP:3 (3 segments) | 6897 (15.74) |WEENOTGiGyImy (e result drops (o 6327% (FOR-RNN, o o). S
MLP-5 (5 segments) 66.97 (74.60) | 64.32 (72.35) th‘OI’ClICZ.l]f)'. more input m‘fonnatlon than for the prc\lml§
FOR-RNN 65.42 (74.27) | 63.20 (72.51) network is present. The merging of the c?ulput:*: of two sc'paralc
BACK-RNN 64.57 (72.83) | 61.91 (70.94) networks (MERGE) trained in each time direction gives a
FOR-RNN (1 delay) 68.45 (75.37) | 65.83 (73.00) recognition rate of 6528% and is worse than the fortvard
FOR-RNN (2 delay) 65.97 (73.03) | 63.27 (70.77) RNN structure using one segment delay. The bldimlloﬂa|
MERGE (FOR+BACK) | 66.94 (75.01) | 65.28 (73.73) recurrent neural network (BRNN) structure results in the best
BRNN 70.73 (77.33) | 68.53 (75.48) performance (68.53%).

ETIMATE

In the preceding section, we have estimated the conditional ¢epie
posterior probability Pr(Cy = k|xT) of a single class k at PosTE ﬁ
a certain time point ¢, given the sequence of input vectors CRobaest

; ints i forat . : RE ON ASSUMING DEPENDENT OUTPUTS
channel points in each quantization cell. For presentation III. PREDICTION AS '

-1 to the network, the byte-coded value is remapped with
value = erf " [2 - (byte 4 1/2) /256 — 1], where erf ™ is
the inverse error function [erf( ) is part of math.h library

[2Y)-3

te the 0P SEALENE

in C]. This mapping produces on average a distribution

that is similar to a Gaussian distribution.

The feature extraction procedure described above transforms
every sentence into a sequence off fixed dimensional vectors
representing acoustic phoneme segments. The sequence of
these segment vectors (along with their phoneme class la-
bels) are used o train and test different ANN structures for
classification experiments, as described below.

b) Experiments: Experiments are performed here with
different ANN structures (¢.g., MLP,RNN, and BRNN), which
allow the use of different amounts of acoustic context. The
MLP structure is cvaluated for three different amounts of
acoustic context as input.

1){ one segment;

2) {three segments (middle, left, and right);

3) \five segments (middle, two left, and two right).

The evaluated RNN structures are unidirectional forward and
backward RNN's that use all acoustic context on one side,
two forward RNN's with one and two segment delays o

incorporate right-hand information, the merged network built T
out of the unidirectional forward and backward RNN’s, and = H Pr(eie, 2, =+ -5 €1-1, g )«
the BRNN. The structures of all networks are adjusted so that t=1 -

each of them has about the same number of{free parameters
(approximately’ 13000 here).
¢) Results: Table 11 shows the phoneme classification
results for the full training and test set. Although the database
is labeled 10 61 symbols, a number of researchers have chosen
to map them to a subset of 39 symbols. Here, results are given
for'both versions. with the results for 39 symbols being simply
a mapping from the results obtained for 61 symbols. Details
of this standard mapping can be found in [11].
The baseline performance assuming neighboring segments

xT. For some applications, it is necessary 1o estima
conditional posterior probability Pr(c1, 2, ***5 er|x¥) of a
sequence of all classes from t=1tt =T instead. of
Pr(C, = k|xT), given the sequence of input vectors. This is a
difficult problem, and no general practical solution is known,
although this type of estimation is essential for many patlern
recognition applications where sequences are involved.

A. Approach

Bidirectional recurrent neural networks can provide an
approach to estimate Pr(e1, ¢z, +, er|xT). Using the rule
p(z, y) = plzly)p(y), we decompose the sequence posterior
probability as

I

Pr(e1, €2, «* s 0T|X'IF)

T
= Pr (Ct]ci+11 Ct42; """ €T x{')
t=1

" -

backward posterior probability

forward posle;rior probability

The probability term within the product is the conditional
probability of an output class given all the input to the
right- and left-hand side plus the class sequence on one side
of the currently evaluated input vector. The two ways of
decomposing Pr(cy, €2, +++, cr|xT) (many more are possi-
ble) are here referred to as thé forward and the backward
posterior probabilities. Note that these decompositions are only
a simple application of probability rules, i.e., no assumptions

to be independent glves@ﬁ%’wﬁmmtew-l) on concerning the shape of the distributions is made.
the test data. If Wlifé€ consecutive segments are (aken as the In the present approach, the goal is to.train a net-

inputs (MLP-3), loosening the independence assumption (o
three segments, the recognition rate goes up td§ Using
ffive segments (MLP-5), the structure is not flexible enough
to make use of the additional input information, and as a
result, the recogriition rate drops o 64.32%. The forward and

tion

e

work to estimate conditional probabilities of the Kkind
Pr (c|e1, €2, +++, €e—1, XT ) (Which are the probability terms
in the products). The estimates for these probabilities can then
be combined by using the formulas above to estimate the full
conditional probability of the sequence. It should be noted
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Fig. 6. Modified bidirectional recurrent ne

that the forward and the backw

: : ard posterior probabilities are
exactly equal, provided the

U probability estimator is perfect.
H?\\'C\:Cr.ll neural networks are used as probability estimators,
this will rarely be the case because different architectures
or c‘]ii'l"ercm local minima of the objective function to be
mmnl'mzcd correspond to estimators of different performance.
It might therefore be useful to combine several eslimators
o get a better estimate of the quantity of interest using
the methods of the previous section. Two candidates that
could be merged here are'Pr(celer, ez, +++, ci-1, X¥) and
Pr(et|etsr, ciga, ooy oy x{) at each time point .

B. Modified Bidirectional Recurrent Neural Networks

A slightly modified BRNN structure can efficiently be
used o estimate the conditional probabilities of the kind
Pr(ctles, ez, +++, e1—1, XT), which is conditioned on continu-
ous (x]) and discrete inputs (c1, €2, +++, ¢—1). Assume that
the linput for a specific time . is'coded as one long vector
containing the target output class ¢; and the original input
vector x; with, for example, the discrete input ¢; coded in
the first L dimensions of the whole input vector. To make the
BRNN suitable to estimate Pr(ci|er, €2, <+ +, €i—1, X7 ), WO
changes are necessary. First, instead of connecting the forward
and backward states to the current output staies, they are
connected to the next and previous output states, respectively,
and the inputs are directly connected to the outputs. Second,
“if in the resulting structure the first L weight connections
from the inputs to the backward states and the inputs to
the outputs are cut, then only discrete input information
from t < t. can be used to make predictions. This is
exactly what is required to estimate the forward posterior
probability Pr(e|er, ¢, «+ vy €t—1, X7 ). Fig. 6 illustrates this
change of the original BRNN architecture. Cutting the input
connections to the forward states instead of the backward states
gives the architecture for estimating the backward posterior
probability. Theoretically, all discrete and continuous inputs
C1, €2,y * " "y Ct—1, xf that are necessary to estimate the prob-
ability are still accessible for a contribution to the prediction.
During training, the bidirectional structure can adapt to the best
possible use of the input information, as opposed (o structures
that do not provide part of the input information because of the
limited size of the input windows (e.g., in MLP and TDNN)
or one-sided windows (unidirectional RNN).
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TABLE Il
Crassirication Resurts For Fuit TIMIT
TrAINING AND TEST Data Wit 61 (39) SYMBOLS

Structure Rec-Rate % Rec-Rate %
TRAIN 61 (39) | TEST 61 (39)

forward. mod. BRNN | 79.11 (84.42) [ 72.70 (79.08)
backward, mod. BRNN | 79.38 (83.27) | 72.74 (77.44)
both merged, lin. 83.57 (87.17) | 77.53 (82.11)
both merged, log. 83.89 (87.45) | 77.75 (82.38)

C. Experiments and Results

1) Experiments: Experiments are performed using the full
TIMIT data sel. To include the output (target) class in-
formation, the original "66-dimensional feature veclors are
extended to 72 dimensions. In the first six dimensions, the
corresponding output class is coded in a binary format (binary
[0, 1] — network input [—1,1]). Two different structures
of the modified BRNN (one for the forward and the other
for the backward posterior probability) are trained separately
as classifiers using the cross-entropy objective function. The
output neurons have the softmax activation function and the
remaining ones the' tanh () activation function. The forward
(backward) modified BRNN has 64 (32) forward and 32
(64) backward states. Additionally; 64 hidden neurons are
implemented before the output layer. This results in a forward
(backward) modified BRNN structure with 26333 weights.
These two structures, as well as their combination—merged
as a linear and a logarithmic opinion pool—are evaluated for
phoneme classification on the test data.

2) Results: The results for the phoneme classification task
are shown in Table 1I1. It can be seen that the combination of
the forward and backward modified BRNN structures results
in much better performance than the individual structures. This
shows that the two structures, even though they are trained on
the same training data set to compute the same probability
Pr(ci, ca, <+, ep|x¥), are providing different estimates of
this probability, and as a result, the combination of the two
networks is giving better results. The slightly better results for
the logarithmic opinion pool with respect to the linear opinion
pool suggest that it is reasonable to assume the two estimates
for the probability Pr(ci, ¢z, ++, cp|x}) as independent,
although the two structures are trained on the same data set.

It should be noted that the modified BRNN structure is only
a tool to estimate the conditional probability of a given class
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quenee and that 11 dpes not 'pmvidc a !::lass sequence with
;m‘ highest probability. For this, all possible class sequences
pave to be searched to get the most probable class sequence
(which s 2 procedure that has to be followed if one is
tercsted in a problem like " continuous speech recognition).
(n the experiments reported in this section, we have used the
class sequence provided by the TIMIT data base. Therefore,
the context on the (right or left) output side is known and is
correcl.

IV. DISCUSSION AND CONCLUSION

In the first part of this paper, a simple extension to a
regular recurrent neural network structure has been presented,
which makes it possible to train the network in' both time
directions simultaneously. Because the network concentrates
on minimizing the objective function for both time directions
simultaneously, there is no need to worry about how to merge
outputs from two separate networks. There is also no need
to search for an ¥optimal delay” to minimize the objective
function in a given data/network structure combination be-
cause all future and past information around the currently
evaluated time point is theoretically available and does not
depend on a predefined delay parameter. Through a series
of extensive experiments, it has been shown that the BRNN
structure leads 1o better results than the other ANN structures.
In all these comparisons, the number of free parameters has
been kept to be approximately the same. The training time for
the BRNN is therefore about the same as for the other RNN's.
Since the search for an optimal delay (an additional search
parameter during development) is not necessary, the BRNN’s
can provide, in comparison to other RNN'’s investigated in

this paper, faster development of real applications with better
results.

In the second part of this paper, we have shown how to use
slightly modified bidirectional recurrent neural nets for the
estimation of the conditional probability of symbol sequences
without making any explicit assumption about the shape of
the output probability distribution. It should be noted that
the modified BRNN structure is only a tool to estimate the
conditional probability of a given class sequence; it does not
provide the class sequence with the highest probability. For
this, all possible class sequences have to be searched to get
the most probable class sequence. We are currently working
on designing an{efficient search engine, which will usc only
ANN’s to find the most probable class sequence.
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